Temperature-related mortality risks: effects of different sources of climatic data in the RF regions in 2004–2019

UDC: 
612.014.43
Authors: 

М.R. Maksimenko

Organization: 

National Research University Higher School of Economics, 11 Myasnitskaya St., Moscow, 101000, Russian Federation

Abstract: 

Climate change and increasing thermal stress highlights the need to investigate the temperature-mortality relationship using long-term aggregated temperature data. Globally, two primary sources of temperature data are utilized: ground-based meteorological observations and raster datasets. Ground-based observations from meteorological stations offer precise local temperature measurements but lack comprehensive spatial coverage. In contrast, raster data provide complete spatial coverage but may not accurately represent local microclimatic conditions. This study aims to compare these data sources for analyzing temperature-related mortality across regions of Russia.

To assess the exposure-response relationship, a two-stage modeling approach was applied. At the first stage, region-specific estimates were derived using a distributed lag model. At the second stage, pooled estimates were computed through random-effects meta-regression.
The temperature-mortality relationship in Russia is characterized by a typical J-shaped curve, with cold temperatures posing a higher mortality risk. Heat-related risks were generally higher when estimated using raster data compared to in-situ observations. Minimum mortality risk temperatures typically fall between 15 and 20 °C, with higher thresholds observed in warmer regions.

This study suggests general comparability of raster and point-based temperature data for mortality analysis. However, in certain regions, particularly large and sparsely populated ones, estimates diverged due to multiple factors.

Keywords: 
climate change, atmosphere reanalysis, air temperature, temperature stress, raster data, ground-based meteorological observations, mortality, regions of Russia
Maksimenko М.R. Temperature-related mortality risks: effects of different sources of climatic data in the RF regions in 2004–2019. Health Risk Analysis, 2025, no. 2, pp. 30–45. DOI: 10.21668/health.risk/2025.2.03.eng
References: 
  1. Meehl G.A., Tebaldi C. More Intense, More Frequent, and Longer Lasting Heat Waves in the 21st Century. Science, 2004, vol. 305, no. 5686, pp. 994–997. DOI: 10.1126/science.1098704
  2. Gasparrini A., Guo Y., Sera F., Vicedo-Cabrera A.M., Huber V., Tong S., de Sousa Zanotti Stagliorio Coelho M., Hi-lario Nascimento Saldiva P. [et al.]. Projections of temperature-related excess mortality under climate change scenarios. Lancet Planet. Health, 2017, vol. 1, no. 9, pp. e360–e367. DOI: 10.1016/S2542-5196(17)30156-0
  3. Masselot P., Mistry M.N., Rao S., Huber V., Monteiro A., Samoli E., Stafoggia M., de'Donato F. [et al.]. Estimating future heat-related and cold-related mortality under climate change, demographic and adaptation scenarios in 854 European cities. Nat. Med., 2025, vol. 31, no. 4, pp. 1294–1302. DOI: 10.1038/s41591-024-03452-2
  4. Basu R. High ambient temperature and mortality: a review of epidemiologic studies from 2001 to 2008. Environ. Health, 2009, vol. 8, no. 1, pp. 40. DOI: 10.1186/1476-069X-8-40
  5. Kovats R.S., Hajat S. Heat Stress and Public Health: A Critical Review. Annu. Rev. Public Health, 2008, vol. 29, pp. 41–55. DOI: 10.1146/annurev.publhealth.29.020907.090843
  6. Cheng J., Xu Z., Bambrick H., Prescott V., Wang N., Zhang Y., Su H., Tong S., Hu W. Cardiorespiratory effects of heatwaves: A systematic review and meta-analysis of global epidemiological evidence. Environ. Res., 2019, vol. 177, pp. 108610. DOI: 10.1016/j.envres.2019.108610
  7. Revich B., Shaposhnikov D. The influence of heat and cold waves on mortality in Russian subarctic cities with varying climates. Int. J. Biometeorol., 2022, vol. 66, no. 12, pp. 2501–2515. DOI: 10.1007/s00484-022-02375-2
  8. Revich B.A., Shaposhnikov D.A. Climate change, heat waves, and cold spells as risk factors for increased mortality in some regions of Russia. Studies on Russian economic development, 2012, vol. 23, no. 2, pp. 195–207. DOI: 10.1134/S1075700712020116
  9. Shaposhnikov D., Revich B., Bellander T., Bero Bedada G., Bottai M., Kharkova T., Kvasha E., Lezina E. [et al.]. Mortality Related to Air Pollution with the Moscow Heat Wave and Wildfire of 2010. Epidemiology, 2014, vol. 25, no. 3, pp. 359–364. DOI: 10.1097/EDE.0000000000000090
  10. Arbuthnott K., Hajat S., Heaviside C., Vardoulakis S. What is cold-related mortality? A multi-disciplinary perspective to inform climate change impact assessments. Environ. Int., 2018, vol. 121, pt 1, pp. 119–129. DOI: 10.1016/j.envint.2018.08.053
  11. Gasparrini A., Guo Y., Hashizume M., Lavigne E., Zanobetti A., Schwartz J., Tobias A., Tong S. [et al.]. Mortality risk attributable to high and low ambient temperature: a multicountry observational study. Lancet, 2015, vol. 386, no. 9991, pp. 369–375. DOI: 10.1016/S0140-6736(14)62114-0
  12. Barnett A.G., Tong S., Clements A.C.A. What measure of temperature is the best predictor of mortality? Environ. Res., 2010, vol. 110, no. 6, pp. 604–611. DOI: 10.1016/j.envres.2010.05.006
  13. Vaneckova P., Neville G., Tippett V., Aitken P., Fitzgerald G., Tong S. Do Biometeorological Indices Improve Modeling Outcomes of Heat-Related Mortality? Journal of Applied Meteorology and Climatology, 2011, vol. 50, no. 6, pp. 1165–1176. DOI: 10.1175/2011JAMC2632.1
  14. Shartova N.V., Shaposhnikov D.A., Konstantinov P.I., Revich B.A. Universal thermal climate index (UTCI) applied to determine thresholds for temperature-related mortality. Health Risk Analysis, 2019, no. 3, pp. 83–93. DOI: 10.21668/health.risk/2019.3.10.eng
  15. Urban A., Di Napoli C., Cloke H.L., Kyselý J., Pappenberger F., Sera F., Schneider R., Vicedo-Cabrera A.M. [et al.]. Evaluation of the ERA5 reanalysis-based Universal Thermal Climate Index on mortality data in Europe. Environ. Res., 2021, vol. 198, pp. 111227. DOI: 10.1016/j.envres.2021.111227
  16. Revich B., Shaposhnikov D. Temperature-induced excess mortality in Moscow, Russia. Int. J. Biometeorol., 2008, vol. 52, no. 5, pp. 367–374. DOI: 10.1007/s00484-007-0131-6
  17. Revich B.A., Shaposhnikov D.A., Galkin V.Т., Krylov S.A., Chertkova A.B. Impact of high ambient air temperatures on human health in Tver. Gigiena i sanitariya, 2005, no. 2, pp. 20–24 (in Russian).
  18. Revitch B.A., Shaposhnikov D.A., Semoutnikova E.G. Climate conditions and ambient air quality as risk factors for mortality in Moscow. Meditsina truda i promyshlennaya ekologiya, 2008, no. 7, pp. 29–35 (in Russian).
  19. Revich B.A., Shaposhnikov D.A., Podol’naya M.A., Khor’kova T.L., Kvasha E.A. Heat waves in southern cities of European Russia as a risk factor for premature mortality. Stud. Russ. Econ. Dev., 2015, vol. 26, pp. 142–150. DOI: 10.1134/S1075700715020100
  20. Revich B.A., Shaposhnikov D.A. Cold waves in southern cities of European Russia and premature mortality. Stud. Russ. Econ. Dev., 2016, vol. 27, no. 2, pp. 210–215. DOI: 10.1134/S107570071602012X
  21. Shartova N.V., Shaposhnikov D.A., Konstantinov P.I., Revich B.A. Air temperature and mortality: heat thresholds and population vulnerability study in Rostov-on-Don. Fundamental'naya i prikladnaya klimatologiya, 2019, vol. 2, pp. 66–94. DOI: 10.21513/2410-8758-2019-2-66-94 (in Russian).
  22. Revich B.A., Shaposhnikov D.A., Anisimov O.A., Belolutskaia M.A. Heat waves and cold spells in three arctic and subarctic cities as mortality risk factors. Gigiena i sanitariya, 2018, vol. 97, no. 9, pp. 791–798. DOI: 10.18821/0016-9900-2018-97-9-791-798 (in Russian).
  23. Revich B.A., Shaposhnikov D.A., Anisimov O.A., Belolutskaya M.A. Impact of Temperature Waves on the Health of Residents in Cities of the Northwestern Region of Russia. Stud. Russ. Econ. Dev., 2019, vol. 30, no. 3, pp. 327–333. DOI: 10.1134/S1075700719030158
  24. Chernykh D.A., Taseiko O.V. Assessment of the risk mortality from thermal waves in Krasnoyarsk city. Ekologiya cheloveka, 2018, no. 2, pp. 3–8. DOI: 10.33396/1728-0869-2018-2-3-8 (in Russian).
  25. Grigorieva E.A. Heat waves at the southern part of the Far East and human health. ZNiSO, 2017, no. 2 (287), pp. 11–14. DOI: 10.35627/2219-5238/2017-287-2-11-14 (in Russian).
  26. Grigorieva E.A. Heat and cold waves at the South of the Russian Far East in 1999–2017. IOP Conf. Ser.: Earth Environ. Sci., 2020, vol. 606, no. 1, pp. 012016. DOI: 10.1088/1755-1315/606/1/012016
  27. Shaposhnikov D., Revich B. Toward meta-analysis of impacts of heat and cold waves on mortality in Russian North. Urban Climate, 2016, vol. 15, pp. 16–24. DOI: 10.1016/j.uclim.2015.11.007
  28. Otrachshenko V., Popova O., Solomin P. Health Consequences of the Russian Weather. Ecological Economics, 2017, vol. 132, pp. 290–306. DOI: 10.1016/j.ecolecon.2016.10.021
  29. Otrachshenko V., Popova O., Solomin P. Misfortunes never come singly: Consecutive weather shocks and mortality in Russia. Econ. Hum. Biol., 2018, vol. 31, pp. 249–258. DOI: 10.1016/j.ehb.2018.08.008
  30. Weinberger K.R., Spangler K.R., Zanobetti A., Schwartz J.D., Wellenius G.A. Comparison of temperature-mortality associations estimated with different exposure metrics. Environ. Epidemiol., 2019, vol. 3, no. 5, pp. e072. DOI: 10.1097/EE9.0000000000000072
  31. Clemens K.K., Ouédraogo A.M., Li L., Voogt J.A., Gilliland J., Scott Krayenhoff E., Leroyer S., Shariff S.Z. Evaluating the association between extreme heat and mortality in urban Southwestern Ontario using different temperature data sources. Sci. Rep., 2021, vol. 11, no. 1, pp. 8153. DOI: 10.1038/s41598-021-87203-0
  32. Daly C. Guidelines for assessing the suitability of spatial climate data sets. Int. J. Clim., 2006, vol. 26, no. 6, pp. 707–721. DOI: 10.1002/joc.1322
  33. Spangler K.R., Weinberger K.R., Wellenius G.A. Suitability of gridded climate datasets for use in environmental epidemiology. J. Expo. Sci. Environ. Epidemiol., 2019, vol. 29, no. 6, pp. 777–789. DOI: 10.1038/s41370-018-0105-2
  34. Donat M.G., Sillmann J., Wild S., Alexander L.V., Lippmann T., Zwiers F.W. Consistency of Temperature and Precipitation Extremes across Various Global Gridded In Situ and Reanalysis Datasets. J. Climate, 2014, vol. 27, no. 13, pp. 5019–5035. DOI: 10.1175/JCLI-D-13-00405.1
  35. Mistry M.N., Schneider R., Masselot P., Royé D., Armstrong B., Kyselý J., Orru H., Sera F. [et al.]. Comparison of weather station and climate reanalysis data for modelling temperature-related mortality. Sci. Rep., 2022, vol. 12, no. 1, pp. 5178. DOI: 10.1038/s41598-022-09049-4
  36. Wu Y., Xu J., Liu Z., Han B., Yang W., Bai Z. Comparison of Population-Weighted Exposure Estimates of Air Pollutants Based on Multiple Geostatistical Models in Beijing, China. Toxics, 2024, vol. 12, no. 3, pp. 197. DOI: 10.3390/toxics12030197
  37. Keller J.P., Peng R.D. Error in estimating area‐level air pollution exposures for epidemiology. Environmetrics, 2019, vol. 30, no. 8, pp. e2573. DOI: 10.1002/env.2573
  38. Jalaludin B., Morgan G., Lincoln D., Sheppeard V., Simpson R., Corbett S. Associations between ambient air pollution and daily emergency department attendances for cardiovascular disease in the elderly (65+ years), Sydney, Australia. J. Expo. Sci. Environ. Epidemiol., 2006, vol. 16, no. 3, pp. 225–237. DOI: 10.1038/sj.jea.7500451
  39. De Schrijver E., Folly C.L., Schneider R., Royé D., Franco O.H., Gasparrini A., Vicedo-Cabrera A.M. A Comparative Analysis of the Temperature‐Mortality Risks Using Different Weather Datasets Across Heterogeneous Regions. GeoHealth, 2021, vol. 5, no. 5, pp. e2020GH000363. DOI: 10.1029/2020GH000363
  40. Grigorieva E.A., Revich B.A. Health Risks to the Russian Population from Temperature Extremes at the Beginning of the XXI Century. Atmosphere, 2021, vol. 12, no. 10, pp. 1331. DOI: 10.3390/atmos12101331
  41. Ballester J., van Daalen K.R., Chen Z.-Y., Achebak H., Antó J.M., Basagaña X., Robine J.-M., Herrmann F.R. [et al.]. The effect of temporal data aggregation to assess the impact of changing temperatures in Europe: an epidemiological modelling study. Lancet Reg. Health Eur., 2023, vol. 36, pp. 100779. DOI: 10.1016/j.lanepe.2023.100779
  42. Shchur A.E., Timonin S.A., Churilova E.V., Sergeev E.V., Sokolova V.V., Rodina O.A., Shamsutdinov B.A., Jdanov D.A., Shkolnikov V.M. Russian Short-Term Mortality Fluctuations Data Series. Population and Economics, 2023, vol. 7, no. 3, pp. 188–197. DOI: 10.3897/popecon.7.e114628
  43. Inness A., Engelen R., Flemming J. The new CAMS global reanalysis of atmospheric composition: Newsletter. ECMWF, 2019, no. 158. Available at: https://www.ecmwf.int/en/newsletter/158/meteorology/new-cams-global-rean... (April 11, 2025).
  44. Gasparrini A. Distributed Lag Linear and Non-Linear Models in R: The Package dlnm. J. Stat. Softw., 2011, vol. 43, no. 8, pp. 1–20.
  45. Tobías A., Hashizume M., Honda Y., Sera F., Fook Sheng Ng C., Kim Y., Roye D., Chung Y. [et al.]. Geographical Variations of the Minimum Mortality Temperature at a Global Scale: A Multicountry Study. Environ. Epidemiol., 2021, vol. 5, no. 5, pp. e169. DOI: 10.1097/EE9.0000000000000169
  46. Gasparrini A. Modeling exposure-lag-response associations with distributed lag non‐linear models. Stat. Med., 2013, vol. 33, no. 5, pp. 881–899. DOI: 10.1002/sim.5963
  47. Gasparrini A., Armstrong B., Kenward M.G. Multivariate meta‐analysis for non‐linear and other multi‐parameter associations. Stat. Med., 2012, vol. 31, no. 29, pp. 3821–3839. DOI: 10.1002/sim.5471
  48. Sera F., Armstrong B., Blangiardo M., Gasparrini A. An extended mixed‐effects framework for meta‐analysis. Stat. Med., 2019, vol. 38, no. 29, pp. 5429–5444. DOI: 10.1002/sim.8362
  49. Yin Q., Wang J., Ren Z., Li J., Guo Y. Mapping the increased minimum mortality temperatures in the context of global climate change. Nat. Commun., 2019, vol. 10, no. 1, pp. 4640. DOI: 10.1038/s41467-019-12663-y
  50. Ruuhela R., Hyvärinen O., Jylhä K. Regional Assessment of Temperature-Related Mortality in Finland. Int. J. Environ. Res. Public Health, 2018, vol. 15, no. 3, pp. 406. DOI: 10.3390/ijerph15030406
  51. Lee M., Shi L., Zanobetti A., Schwartz J.D. Study on the association between ambient temperature and mortality using spatially resolved exposure data. Environ. Res., 2016, vol. 151, pp. 610–617. DOI: 10.1016/j.envres.2016.08.029
  52. Royé D., Íñiguez C., Tobías A. Comparison of temperature–mortality associations using observed weather station and reanalysis data in 52 Spanish cities. Environ. Res., 2020, vol. 183, pp. 109237. DOI: 10.1016/j.envres.2020.109237
  53. Choi H.M., Bell M.L. Heat-mortality relationship in North Carolina: Comparison using different exposure methods. J. Expo. Sci. Environ. Epidemiol., 2023, vol. 33, no. 4, pp. 637–645. DOI: 10.1038/s41370-023-00544-y
  54. Hanigan I., Hall G., Dear K.B.G. A comparison of methods for calculating population exposure estimates of daily weather for health research. Int. J. Health Geogr., 2006, vol. 5, pp. 38. DOI: 10.1186/1476-072X-5-38
Received: 
07.05.2025
Approved: 
20.05.2025
Accepted for publication: 
22.06.2025

You are here