Temperature-related mortality risks: effects of different sources of climatic data in the RF regions in 2004–2019
М.R. Maksimenko
National Research University Higher School of Economics, 11 Myasnitskaya St., Moscow, 101000, Russian Federation
Climate change and increasing thermal stress highlights the need to investigate the temperature-mortality relationship using long-term aggregated temperature data. Globally, two primary sources of temperature data are utilized: ground-based meteorological observations and raster datasets. Ground-based observations from meteorological stations offer precise local temperature measurements but lack comprehensive spatial coverage. In contrast, raster data provide complete spatial coverage but may not accurately represent local microclimatic conditions. This study aims to compare these data sources for analyzing temperature-related mortality across regions of Russia.
To assess the exposure-response relationship, a two-stage modeling approach was applied. At the first stage, region-specific estimates were derived using a distributed lag model. At the second stage, pooled estimates were computed through random-effects meta-regression.
The temperature-mortality relationship in Russia is characterized by a typical J-shaped curve, with cold temperatures posing a higher mortality risk. Heat-related risks were generally higher when estimated using raster data compared to in-situ observations. Minimum mortality risk temperatures typically fall between 15 and 20 °C, with higher thresholds observed in warmer regions.
This study suggests general comparability of raster and point-based temperature data for mortality analysis. However, in certain regions, particularly large and sparsely populated ones, estimates diverged due to multiple factors.
- Meehl G.A., Tebaldi C. More Intense, More Frequent, and Longer Lasting Heat Waves in the 21st Century. Science, 2004, vol. 305, no. 5686, pp. 994–997. DOI: 10.1126/science.1098704
- Gasparrini A., Guo Y., Sera F., Vicedo-Cabrera A.M., Huber V., Tong S., de Sousa Zanotti Stagliorio Coelho M., Hi-lario Nascimento Saldiva P. [et al.]. Projections of temperature-related excess mortality under climate change scenarios. Lancet Planet. Health, 2017, vol. 1, no. 9, pp. e360–e367. DOI: 10.1016/S2542-5196(17)30156-0
- Masselot P., Mistry M.N., Rao S., Huber V., Monteiro A., Samoli E., Stafoggia M., de'Donato F. [et al.]. Estimating future heat-related and cold-related mortality under climate change, demographic and adaptation scenarios in 854 European cities. Nat. Med., 2025, vol. 31, no. 4, pp. 1294–1302. DOI: 10.1038/s41591-024-03452-2
- Basu R. High ambient temperature and mortality: a review of epidemiologic studies from 2001 to 2008. Environ. Health, 2009, vol. 8, no. 1, pp. 40. DOI: 10.1186/1476-069X-8-40
- Kovats R.S., Hajat S. Heat Stress and Public Health: A Critical Review. Annu. Rev. Public Health, 2008, vol. 29, pp. 41–55. DOI: 10.1146/annurev.publhealth.29.020907.090843
- Cheng J., Xu Z., Bambrick H., Prescott V., Wang N., Zhang Y., Su H., Tong S., Hu W. Cardiorespiratory effects of heatwaves: A systematic review and meta-analysis of global epidemiological evidence. Environ. Res., 2019, vol. 177, pp. 108610. DOI: 10.1016/j.envres.2019.108610
- Revich B., Shaposhnikov D. The influence of heat and cold waves on mortality in Russian subarctic cities with varying climates. Int. J. Biometeorol., 2022, vol. 66, no. 12, pp. 2501–2515. DOI: 10.1007/s00484-022-02375-2
- Revich B.A., Shaposhnikov D.A. Climate change, heat waves, and cold spells as risk factors for increased mortality in some regions of Russia. Studies on Russian economic development, 2012, vol. 23, no. 2, pp. 195–207. DOI: 10.1134/S1075700712020116
- Shaposhnikov D., Revich B., Bellander T., Bero Bedada G., Bottai M., Kharkova T., Kvasha E., Lezina E. [et al.]. Mortality Related to Air Pollution with the Moscow Heat Wave and Wildfire of 2010. Epidemiology, 2014, vol. 25, no. 3, pp. 359–364. DOI: 10.1097/EDE.0000000000000090
- Arbuthnott K., Hajat S., Heaviside C., Vardoulakis S. What is cold-related mortality? A multi-disciplinary perspective to inform climate change impact assessments. Environ. Int., 2018, vol. 121, pt 1, pp. 119–129. DOI: 10.1016/j.envint.2018.08.053
- Gasparrini A., Guo Y., Hashizume M., Lavigne E., Zanobetti A., Schwartz J., Tobias A., Tong S. [et al.]. Mortality risk attributable to high and low ambient temperature: a multicountry observational study. Lancet, 2015, vol. 386, no. 9991, pp. 369–375. DOI: 10.1016/S0140-6736(14)62114-0
- Barnett A.G., Tong S., Clements A.C.A. What measure of temperature is the best predictor of mortality? Environ. Res., 2010, vol. 110, no. 6, pp. 604–611. DOI: 10.1016/j.envres.2010.05.006
- Vaneckova P., Neville G., Tippett V., Aitken P., Fitzgerald G., Tong S. Do Biometeorological Indices Improve Modeling Outcomes of Heat-Related Mortality? Journal of Applied Meteorology and Climatology, 2011, vol. 50, no. 6, pp. 1165–1176. DOI: 10.1175/2011JAMC2632.1
- Shartova N.V., Shaposhnikov D.A., Konstantinov P.I., Revich B.A. Universal thermal climate index (UTCI) applied to determine thresholds for temperature-related mortality. Health Risk Analysis, 2019, no. 3, pp. 83–93. DOI: 10.21668/health.risk/2019.3.10.eng
- Urban A., Di Napoli C., Cloke H.L., Kyselý J., Pappenberger F., Sera F., Schneider R., Vicedo-Cabrera A.M. [et al.]. Evaluation of the ERA5 reanalysis-based Universal Thermal Climate Index on mortality data in Europe. Environ. Res., 2021, vol. 198, pp. 111227. DOI: 10.1016/j.envres.2021.111227
- Revich B., Shaposhnikov D. Temperature-induced excess mortality in Moscow, Russia. Int. J. Biometeorol., 2008, vol. 52, no. 5, pp. 367–374. DOI: 10.1007/s00484-007-0131-6
- Revich B.A., Shaposhnikov D.A., Galkin V.Т., Krylov S.A., Chertkova A.B. Impact of high ambient air temperatures on human health in Tver. Gigiena i sanitariya, 2005, no. 2, pp. 20–24 (in Russian).
- Revitch B.A., Shaposhnikov D.A., Semoutnikova E.G. Climate conditions and ambient air quality as risk factors for mortality in Moscow. Meditsina truda i promyshlennaya ekologiya, 2008, no. 7, pp. 29–35 (in Russian).
- Revich B.A., Shaposhnikov D.A., Podol’naya M.A., Khor’kova T.L., Kvasha E.A. Heat waves in southern cities of European Russia as a risk factor for premature mortality. Stud. Russ. Econ. Dev., 2015, vol. 26, pp. 142–150. DOI: 10.1134/S1075700715020100
- Revich B.A., Shaposhnikov D.A. Cold waves in southern cities of European Russia and premature mortality. Stud. Russ. Econ. Dev., 2016, vol. 27, no. 2, pp. 210–215. DOI: 10.1134/S107570071602012X
- Shartova N.V., Shaposhnikov D.A., Konstantinov P.I., Revich B.A. Air temperature and mortality: heat thresholds and population vulnerability study in Rostov-on-Don. Fundamental'naya i prikladnaya klimatologiya, 2019, vol. 2, pp. 66–94. DOI: 10.21513/2410-8758-2019-2-66-94 (in Russian).
- Revich B.A., Shaposhnikov D.A., Anisimov O.A., Belolutskaia M.A. Heat waves and cold spells in three arctic and subarctic cities as mortality risk factors. Gigiena i sanitariya, 2018, vol. 97, no. 9, pp. 791–798. DOI: 10.18821/0016-9900-2018-97-9-791-798 (in Russian).
- Revich B.A., Shaposhnikov D.A., Anisimov O.A., Belolutskaya M.A. Impact of Temperature Waves on the Health of Residents in Cities of the Northwestern Region of Russia. Stud. Russ. Econ. Dev., 2019, vol. 30, no. 3, pp. 327–333. DOI: 10.1134/S1075700719030158
- Chernykh D.A., Taseiko O.V. Assessment of the risk mortality from thermal waves in Krasnoyarsk city. Ekologiya cheloveka, 2018, no. 2, pp. 3–8. DOI: 10.33396/1728-0869-2018-2-3-8 (in Russian).
- Grigorieva E.A. Heat waves at the southern part of the Far East and human health. ZNiSO, 2017, no. 2 (287), pp. 11–14. DOI: 10.35627/2219-5238/2017-287-2-11-14 (in Russian).
- Grigorieva E.A. Heat and cold waves at the South of the Russian Far East in 1999–2017. IOP Conf. Ser.: Earth Environ. Sci., 2020, vol. 606, no. 1, pp. 012016. DOI: 10.1088/1755-1315/606/1/012016
- Shaposhnikov D., Revich B. Toward meta-analysis of impacts of heat and cold waves on mortality in Russian North. Urban Climate, 2016, vol. 15, pp. 16–24. DOI: 10.1016/j.uclim.2015.11.007
- Otrachshenko V., Popova O., Solomin P. Health Consequences of the Russian Weather. Ecological Economics, 2017, vol. 132, pp. 290–306. DOI: 10.1016/j.ecolecon.2016.10.021
- Otrachshenko V., Popova O., Solomin P. Misfortunes never come singly: Consecutive weather shocks and mortality in Russia. Econ. Hum. Biol., 2018, vol. 31, pp. 249–258. DOI: 10.1016/j.ehb.2018.08.008
- Weinberger K.R., Spangler K.R., Zanobetti A., Schwartz J.D., Wellenius G.A. Comparison of temperature-mortality associations estimated with different exposure metrics. Environ. Epidemiol., 2019, vol. 3, no. 5, pp. e072. DOI: 10.1097/EE9.0000000000000072
- Clemens K.K., Ouédraogo A.M., Li L., Voogt J.A., Gilliland J., Scott Krayenhoff E., Leroyer S., Shariff S.Z. Evaluating the association between extreme heat and mortality in urban Southwestern Ontario using different temperature data sources. Sci. Rep., 2021, vol. 11, no. 1, pp. 8153. DOI: 10.1038/s41598-021-87203-0
- Daly C. Guidelines for assessing the suitability of spatial climate data sets. Int. J. Clim., 2006, vol. 26, no. 6, pp. 707–721. DOI: 10.1002/joc.1322
- Spangler K.R., Weinberger K.R., Wellenius G.A. Suitability of gridded climate datasets for use in environmental epidemiology. J. Expo. Sci. Environ. Epidemiol., 2019, vol. 29, no. 6, pp. 777–789. DOI: 10.1038/s41370-018-0105-2
- Donat M.G., Sillmann J., Wild S., Alexander L.V., Lippmann T., Zwiers F.W. Consistency of Temperature and Precipitation Extremes across Various Global Gridded In Situ and Reanalysis Datasets. J. Climate, 2014, vol. 27, no. 13, pp. 5019–5035. DOI: 10.1175/JCLI-D-13-00405.1
- Mistry M.N., Schneider R., Masselot P., Royé D., Armstrong B., Kyselý J., Orru H., Sera F. [et al.]. Comparison of weather station and climate reanalysis data for modelling temperature-related mortality. Sci. Rep., 2022, vol. 12, no. 1, pp. 5178. DOI: 10.1038/s41598-022-09049-4
- Wu Y., Xu J., Liu Z., Han B., Yang W., Bai Z. Comparison of Population-Weighted Exposure Estimates of Air Pollutants Based on Multiple Geostatistical Models in Beijing, China. Toxics, 2024, vol. 12, no. 3, pp. 197. DOI: 10.3390/toxics12030197
- Keller J.P., Peng R.D. Error in estimating area‐level air pollution exposures for epidemiology. Environmetrics, 2019, vol. 30, no. 8, pp. e2573. DOI: 10.1002/env.2573
- Jalaludin B., Morgan G., Lincoln D., Sheppeard V., Simpson R., Corbett S. Associations between ambient air pollution and daily emergency department attendances for cardiovascular disease in the elderly (65+ years), Sydney, Australia. J. Expo. Sci. Environ. Epidemiol., 2006, vol. 16, no. 3, pp. 225–237. DOI: 10.1038/sj.jea.7500451
- De Schrijver E., Folly C.L., Schneider R., Royé D., Franco O.H., Gasparrini A., Vicedo-Cabrera A.M. A Comparative Analysis of the Temperature‐Mortality Risks Using Different Weather Datasets Across Heterogeneous Regions. GeoHealth, 2021, vol. 5, no. 5, pp. e2020GH000363. DOI: 10.1029/2020GH000363
- Grigorieva E.A., Revich B.A. Health Risks to the Russian Population from Temperature Extremes at the Beginning of the XXI Century. Atmosphere, 2021, vol. 12, no. 10, pp. 1331. DOI: 10.3390/atmos12101331
- Ballester J., van Daalen K.R., Chen Z.-Y., Achebak H., Antó J.M., Basagaña X., Robine J.-M., Herrmann F.R. [et al.]. The effect of temporal data aggregation to assess the impact of changing temperatures in Europe: an epidemiological modelling study. Lancet Reg. Health Eur., 2023, vol. 36, pp. 100779. DOI: 10.1016/j.lanepe.2023.100779
- Shchur A.E., Timonin S.A., Churilova E.V., Sergeev E.V., Sokolova V.V., Rodina O.A., Shamsutdinov B.A., Jdanov D.A., Shkolnikov V.M. Russian Short-Term Mortality Fluctuations Data Series. Population and Economics, 2023, vol. 7, no. 3, pp. 188–197. DOI: 10.3897/popecon.7.e114628
- Inness A., Engelen R., Flemming J. The new CAMS global reanalysis of atmospheric composition: Newsletter. ECMWF, 2019, no. 158. Available at: https://www.ecmwf.int/en/newsletter/158/meteorology/new-cams-global-rean... (April 11, 2025).
- Gasparrini A. Distributed Lag Linear and Non-Linear Models in R: The Package dlnm. J. Stat. Softw., 2011, vol. 43, no. 8, pp. 1–20.
- Tobías A., Hashizume M., Honda Y., Sera F., Fook Sheng Ng C., Kim Y., Roye D., Chung Y. [et al.]. Geographical Variations of the Minimum Mortality Temperature at a Global Scale: A Multicountry Study. Environ. Epidemiol., 2021, vol. 5, no. 5, pp. e169. DOI: 10.1097/EE9.0000000000000169
- Gasparrini A. Modeling exposure-lag-response associations with distributed lag non‐linear models. Stat. Med., 2013, vol. 33, no. 5, pp. 881–899. DOI: 10.1002/sim.5963
- Gasparrini A., Armstrong B., Kenward M.G. Multivariate meta‐analysis for non‐linear and other multi‐parameter associations. Stat. Med., 2012, vol. 31, no. 29, pp. 3821–3839. DOI: 10.1002/sim.5471
- Sera F., Armstrong B., Blangiardo M., Gasparrini A. An extended mixed‐effects framework for meta‐analysis. Stat. Med., 2019, vol. 38, no. 29, pp. 5429–5444. DOI: 10.1002/sim.8362
- Yin Q., Wang J., Ren Z., Li J., Guo Y. Mapping the increased minimum mortality temperatures in the context of global climate change. Nat. Commun., 2019, vol. 10, no. 1, pp. 4640. DOI: 10.1038/s41467-019-12663-y
- Ruuhela R., Hyvärinen O., Jylhä K. Regional Assessment of Temperature-Related Mortality in Finland. Int. J. Environ. Res. Public Health, 2018, vol. 15, no. 3, pp. 406. DOI: 10.3390/ijerph15030406
- Lee M., Shi L., Zanobetti A., Schwartz J.D. Study on the association between ambient temperature and mortality using spatially resolved exposure data. Environ. Res., 2016, vol. 151, pp. 610–617. DOI: 10.1016/j.envres.2016.08.029
- Royé D., Íñiguez C., Tobías A. Comparison of temperature–mortality associations using observed weather station and reanalysis data in 52 Spanish cities. Environ. Res., 2020, vol. 183, pp. 109237. DOI: 10.1016/j.envres.2020.109237
- Choi H.M., Bell M.L. Heat-mortality relationship in North Carolina: Comparison using different exposure methods. J. Expo. Sci. Environ. Epidemiol., 2023, vol. 33, no. 4, pp. 637–645. DOI: 10.1038/s41370-023-00544-y
- Hanigan I., Hall G., Dear K.B.G. A comparison of methods for calculating population exposure estimates of daily weather for health research. Int. J. Health Geogr., 2006, vol. 5, pp. 38. DOI: 10.1186/1476-072X-5-38