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Climate change and increasing thermal stress highlights the need to investigate the temperature-mortality relationship 

using long-term aggregated temperature data. Globally, two primary sources of temperature data are utilized: ground-based 
meteorological observations and raster datasets. Ground-based observations from meteorological stations offer precise lo-
cal temperature measurements but lack comprehensive spatial coverage. In contrast, raster data provide complete spatial 
coverage but may not accurately represent local microclimatic conditions. This study aims to compare these data sources for 
analyzing temperature-related mortality across regions of Russia. 

To assess the exposure-response relationship, a two-stage modeling approach was applied. At the first stage, region-
specific estimates were derived using a distributed lag model. At the second stage, pooled estimates were computed through 
random-effects meta-regression. 

The temperature-mortality relationship in Russia is characterized by a typical J-shaped curve, with cold temperatures 
posing a higher mortality risk. Heat-related risks were generally higher when estimated using raster data compared to in-
situ observations. Minimum mortality risk temperatures typically fall between 15 and 20 °C, with higher thresholds observed 
in warmer regions. 

This study suggests general comparability of raster and point-based temperature data for mortality analysis. However, 
in certain regions, particularly large and sparsely populated ones, estimates diverged due to multiple factors. 

Keywords: climate change, atmosphere reanalysis, air temperature, temperature stress, raster data, ground-based me-
teorological observations, mortality, regions of Russia. 
 

 
Climate change leads to more frequent 

and more intense heat waves as well as longer 
periods of stably high ambient air temperatures 
during which mortality risks grow dispropor-
tionally faster, especially for the most suscep-
tible population groups [1]. Some studies re-
port that a potential decrease in cold-related 
deaths does not balance a steep rise in heat-
related excess mortality [2]. In particular, the 
number of temperature-related deaths is pre-
dicted to grow practically everywhere in 
Europe, even taking adaptation into account 
[3]. In this respect, studies that focus on tem-
perature effects on population health and mor-
tality are becoming more and more relevant 
and the issue requires more detailed analysis. 

The greatest attention has been paid to the 
relationship between mortality risks and expo-

sure to extremely high temperatures. Since 
drastic rises in mortality during heat periods 
have always been a serious challenge for pub-
lic health, they have long been examined 
within epidemiological studies [4]. Accumu-
lated data give evidence of a considerable 
health effect produced by heat waves including 
a significant growth in cardiorespiratory risks 
[5–7]. In addition, pollutant concentrations 
grow in ambient air during heat waves due to 
wildfires, air stagnation, occurring ‘heat is-
lands’ and other factors; this is an additional 
health risk factor [8, 9]. 

At the same time, excess mortality in cold 
periods has been given much less attention by 
researchers and available data on causal rela-
tionships and physiological pathways are pro-
vided with a limited evidence base [10].  
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Nevertheless, epidemiological studies show 
that it is cold-related risks that make the great-
est contribution to the overall temperature-
related mortality [11]. 

An accurate estimate of a temperature 
stress perceived by people is the most difficult 
task from the meteorological point of view. 
This is due to the fact that temperature effects 
depend on several concomitant factors such as 
humidity, wind speed, atmospheric pressure, 
etc. [12]. Various biometeorological indices are 
used to consider these factors; they are mostly 
calculated relaying on a combination of these 
parameters with air temperatures to estimate the 
integral heat stress value [13–15]. Nevertheless, 
basic results are quite similar in most cases 
when mean daily temperatures are employed to 
predict excess mortality risks [12]. 

Russian experience gained in investigating 
temperature-related mortality is, as a rule, based 
on studies accomplished in various cities across 
Russia. The first studies focused on analyzing 
cold-related risks and peculiarities of people’s 
adaptation to low temperatures1. However, sys-
temic epidemiological studies were first con-
ducted only in mid-2000ties [16–18]. They re-
vealed a significant rise in mortality in certain 
groups during the heat waves in 1999 and 2001 
as well as the cold wave in 2006. 

In particular, excess mortality has been 
evidenced during heat and cold waves in the 
southern regions [19–21], north regions [7, 14, 
22], northwestern regions [23], Siberia [24], 
Far East [25, 26], and Moscow [9]. 

The considerable part of Russian studies 
focuses on estimating excess mortality during 
heat or cold waves per age groups or causes of 
death; another focus is determining associa-
tions between air temperatures and mortality 
risks within specific cities. Various biometeo-
rological indices as mortality predictors have 
been compared as well [14, 21]. Special atten-
tion has been paid to interactions between air 
temperatures and ambient air pollution as an 

additional risk factor [9]. In addition, impacts 
exerted on mortality rates by duration of heat 
or cold waves have also been given some at-
tention [20]. 

Common conclusions made in these stud-
ies give evidence of excess mortality both dur-
ing heat and cold waves; however, specific 
risk levels depend on geographical conditions, 
analyzed population groups, heat waves crite-
ria, meteorological parameters, etc. For exam-
ple, using Volgograd, Rostov-on-Don and As-
trakhan as examples, researchers have shown 
that mortality risks during heat waves are 
higher than similar risks during cold ones [19, 
20]. On the contrary, cold-related risks have 
turned out to be higher in Murmansk, Ark-
hangelsk and Magadan [7]. Studies accom-
plished in Khabarovsk and Krasnoyarsk have 
established that the population in both cities 
faces excess mortality both during heat and 
cold waves. For Khabarovsk, the highest mor-
tality risks were established during heat waves 
[26], whereas for Krasnoyarsk during cold 
waves [24]. 

There are comparatively few studies with 
their focus on estimating temperature effects 
on mortality at the regional level [27–29]. In 
general, cold-related risks are established to be 
higher in them; however, the analysis gets too 
complicated due to too wide confidence inter-
vals in estimates.  

Approaches to data analysis in envi-
ronmental epidemiology. Data on the envi-
ronmental conditions (temperatures, ambient 
air pollution, etc.) are usually obtained by 
ground-based observations or are raster (grid-
ded) datasets.  Ground-based observations 
provide highly accurate data directly at meas-
uring points and are often considered the 
‘golden standard’ due to it. However, they 
cannot provide the complete geographical 
coverage. Moreover, observation stations (es-
pecially meteorological ones) are often located 
in atypical places such as airports or outskirts 

__________________________ 
 

1 Donaldson G.C., Tchernjavskii V.E., Ermakov S.P., Bucher K., Keatinge W.R. Winter mortality and cold stress in 
Yekaterinburg, Russia: interview survey. BMJ, 1998, vol. 316, no. 7130, pp. 514–518. DOI: 10.1136/bmj.316.7130.514; 
Donaldson G.C., Ermakov S.P., Komarov Y.M., McDonald C.P., Keatinge W.R. Cold related mortalities and protection against 
cold in Yakutsk, eastern Siberia: observation and interview study. BMJ, 1998, vol. 317, no. 7164, pp. 978–982. DOI: 
10.1136/bmj.317.7164.978 
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of large cities; this makes them much less eli-
gible for assessing health risks in densely 
populated residential areas [30, 31]. 

Gridded data on temperatures are created 
by using remote sensing or by interpolating 
and using various geostatistical methods. This 
approach provides complete coverage of the 
whole analyzed area. However, errors in 
measurements, calculations and aggregations 
limit their accuracy and applicability as a 
source of data on the environment [32]. Global 
gridded products, though having comparable 
time-specific detailing, often have too low spa-
tial resolution and describe actual conditions 
only as averaged without considering local 
patterns [33] and turn out to be available only 
with a certain lag. Gridded datasets with ex-
tremely high resolution tend to have very lim-
ited coverage; therefore, they do not allow 
analysis within spacious regions. 

Atmospheric reanalyses are a source able 
to provide gridded data on temperatures used 
in environmental epidemiology. They are 
based on remote sensing data, ground-based 
observations and atmospheric circulation mod-
els, which allows creating continuous time se-
ries and make retrospective forecasts. How-
ever, since these are model calculations, they 
are often unable to represent local weather 
conditions [34]. Nevertheless, multiple studies 
describe their mutual compatibility with other 
data sources for mortality analysis [35, 36].  

Additional complications are associated 
with calculating an aggregated temperature 
level within a specific area since the choice of 
a concrete calculation method can turn out to 
be as crucial as the choice of a this or that data 
source [37]. Averaging of all available values 
seems to be the simplest and intuitively under-
standable aggregation method [38]. However, 
such estimates often turn out to be non-
representative. For example, a situation in a 
border area can be reflected by observations 
made in other regions much more accurately; 
given that, sometimes it is advisable to expand 
a selection of meteorological stations by in-
cluding a buffer area. Averaging also does not 
make it possible to consider differences related 
to population distribution variability. To over-

come that, a possible solution might be to con-
sider each meteorological station with a 
weight, which is inversely proportional to the 
distance between this station and the center of 
the region. In this case, the population center 
becomes the most representative central point, 
which reflects peculiarities of population dis-
tribution. The population center in a region is a 
point with the smallest distance from it to all 
other points in this region considering their 
weights per population numbers.  

A similar issue related to the necessity to 
consider uneven population distribution arises 
when gridded data are used for aggregated es-
timation of heat stress [39]. Gridded surfaces 
of population density are used additionally to 
resolve it. Temperature values, which are 
weighted per population numbers, are much 
more accurate as aggregated heat stress esti-
mates.  

In Russian practice, most studies with 
their focus on temperature-related mortality 
have been conducted in specific cities; there-
fore, ground-based observations have been 
usually used as temperature data [40]. As a 
rule, information about temperatures beyond 
Moscow is available only from the station 
network of the Federal Service for Hydrome-
teorology and Environmental Monitoring 
(Rosgidromet); these data have been used by 
most Russian researchers. Since their analyses 
have been performed within boundaries of one 
specific city, they have not faced the issue of 
data aggregating and averaging. Studies that 
examine changes in temperature-related mor-
tality at the regional level are rather scarce and 
they also rely, as a rule, on point data obtained 
at ground-based stations [28, 29]. Gridded data 
and reanalyses data have been used to investi-
gate mortality rather rarely so far regardless of 
their considerable potential for analysis due to 
an opportunity to ensure full coverage of an 
analyzed area.  

This study aimed to perform regional es-
timates of temperature-related mortality risks 
calculated using two data sources, ground-
based observations and gridded reanalysis 
data. We assumed that considerable differ-
ences would not be found between these two 
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data sources; however, small deviations would 
be observed for heat-related risks.  

Materials and methods. The study cov-
ered the period between 2004 and 2019, which 
was characterized with a stable descending 
trend in the national-level mortality in Russia. 
The analysis included 80 RF regions with con-
tinuous time series. Crimea and Sevastopol 
were excluded from the analysis since data for 
these regions are available only starting from 
2015. In addition, the Khanty-Mansi Autono-
mous Area and Yamal-Nenets Autonomous 
Area were included into the Tyumen region; 
the Nenets Autonomous area, the Arkhangelsk 
region.  

All data on mortality and averaged tem-
peratures in the analyzed regions were aggre-
gated on a weekly basis. Although daily series 
can reflect impacts of short-term effects more 
accurately, use of weekly data shows the re-
sults, which are comparable per quality and 
representativeness [41]. 

The Russian Database on Short-Term 
Fluctuations in Mortality (RDSTFM) was used 
as a major source of demographic data. It con-
tains weekly statistical data on mortality per 
RF regions over 2000–20212. The database 
uses depersonalized micro-data provided by 
Rosstat and aggregated per regions on the 
weekly basis3. Weekly age-standardized death 
rates (ASDR) were taken as a research object 
using the Revision of the European Standard 
Population 20134; it helped exclude effects 
produced by an age-specific structure on esti-
mates of relationships between mortality and 
temperatures [42]. Data taken from the Rus-
sian Database on Birthrates and Mortality were 
used to estimate average annual population 
numbers; these data are calculated based on 
Rosstat data and the database itself was cre-

ated by the Center for Demography Studies of 
the Russian School of Economics5. Data on 
population numbers were taken without recal-
culation considering the results of the 2021 
Census. 

Mean air temperatures were calculated 
for each region to estimate risks associated 
with heat stress; calculations were made for 
each region per weekly basis using two data 
sources, ground-based meteorological obser-
vations and gridded data of atmospheric re-
analysis.  

Mean weekly air temperatures were 
used as point data sources; they were calcu-
lated based on data collected at ground-
based meteorological stations of the Aisori-
M database provided by the Russian Scien-
tific Research Institute for Hydrometeo-
rological Information – Global Data Center6. 
This data array includes prompt meteoro-
logical observations from 600 stations that 
cover the whole territory of Russia and some 
countries of former Soviet Union. Since con-
tinuous data series were not available for all 
meteorological stations and not all of them 
were located near the Russian border, over-
all, 571 stations were included in the analy-
sis. In addition, the Aisori-M database con-
tains a reference book with description of 
possible changes in the measurement meth-
odology for each station as well as their geo-
graphical coordinates, which were employed 
in further calculations.  

Gridded data were obtained from EAC4 
(ECMWF Atmospheric Composition Reanaly-
sis 4) conducted by the European Centre for 
Medium-Range Weather Forecasts (ECMWF) 
on the global scale [43]. EAC4 Reanalysis has 
spatial resolution 0.75 per 0.75 degrees and is 
available at the Copernicus Atmosphere Data 

__________________________ 
 

2 Rossiiskaya baza dannykh kratkosrochnykh kolebanii smertnosti [The Russian Database on Short-Term Fluctuations in Mor-
tality (RDSTFM)]. International Laboratory for Population and Health Studies, SRI HSE. Available at: https://demogr.hse.ru/russtmf 
(April 17, 2025) (in Russian). 

3 Excluding weeks 9–13 in 2012 in the Pskov region. 
4 Eurostat. Revision of the European Standard Population. Report of Eurostat's task force: 2013 edition. Publications Office 

of the European Union. DOI: 10.2785/11470 
5 Tsentr demograficheskikh issledovanii [Center for Demography Studies]. Russian School of Economics (RSE). Available 

at: https://www.nes.ru/demogr/ (April 17, 2025) (in Russian). 
6 Aisori-M: Spetsializirovannye massivy dlya klimaticheskikh issledovanii [Aisori-М: Specialized data arrays for climatic 

research]. Available at: http://aisori-m.meteo.ru (April 14, 2025) (in Russian). 
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Store7. The reanalysis data have been pub-
lished since 2003 and are still renewed twice a 
year with a several months lag. Moreover, 
EAC4 has data on some other meteorological 
parameters as well as levels of various chemi-
cals in ambient air. Initial data time resolution 
is 3 hours but they were aggregated per weeks 
within our analysis.  

To allow for uneven population distribu-
tion within the analyzed regions, gridded data 
were taken from the Gridded Population of the 
World, Version 4 (GPWv4), one of the most 
commonly used data source on population 
numbers for making regional estimates of 
various square indicators. This data array is 
provided by the NASA Socioeconomic Data 
and Applications Center (SEDAC)8 and has 
spatial resolution 0.5 per 0.5 degrees9. GPWv4 
is based on the official demographic statistics; 
in particular, the municipal level is used in the 
analysis for Russia. Additionally, GPWv4 al-
lows for peculiarities of the Earth surface; due 
to it, population density is more consistent 
with actual population distribution. The 
GPWv4 data set for 2010 was selected as a 
data source as reflecting population density in 
the middle of the analyzed period. 

Three approaches were used to estimate 
mean weekly temperatures aggregated per re-
gions; two of them were based on data col-
lected at ground-base stations. For the first 
method, the population center was determined 
in each region based on population density 
taken from the GPWv4. Next, weights were 
assigned to all meteorological stations located 
within a given region and within a 200-km (in 
accordance with [29]) buffer area around it. 
These weights were inversely proportionate to 
distances between them and the regional popu-
lation center. Mean weekly temperatures were 
calculated as a weighted sum of temperatures 
per all selected meteorological stations. 

In addition, mean weekly temperatures 
were calculated per regions using an alterna-

tive way for additional verification of the es-
timates. It involved estimating weekly tem-
peratures at the municipal level. Similarly, a 
population center was established for each 
municipality, meteorological stations were se-
lected within a relevant buffer area, and 
weights were assigned in conformity with the 
distance between them and the municipality 
center. After that, a mean regional temperature 
was calculated as a weighted mean tempera-
ture per municipalities where weights were 
established based on a population number in 
each territorial unit. 

Images from the EAC4 reanalysis aver-
aged over weeks were used to calculate mean 
temperatures based on gridded data. These 
data were reduced to the spatial resolution of 
the population density grid to provide mutual 
compatibility. Therefore, mean temperature 
values were calculated for each region as mean 
temperature values in relevant grid cells 
weighted per the number of people living 
within each cell. 

To estimate the relationship between mor-
tality risks and temperatures, the two-level 
model with quasi-Poisson regression was used 
for each region at the first level and meta-
analysis of regional estimates to obtain aggre-
gated results at the second level. In particular, 
at the first stage, the dose-response curve was 
built for each region using the Distributed Lag 
Model (DLM) [44] to describe influence of 
temperatures on mortality considering remote 
temperature-related effects. Next, these re-
gional estimates were aggregated to calculate 
this relationship for Russia as a whole and to 
subsequently adjust the regional results per 
these figures.  

In this context, the dose-response curve 
reflected estimates of Relative Risks (RR) of 
mortality for all observed temperatures. Since 
it has a non-linear shape, as a rule, it is given 
as non-parametric functions. The Minimum 
Mortality Temperature (MMT) was taken as 

__________________________ 
 

7 Atmosphere Data Store. Available at: https://ads.atmosphere.copernicus.eu (April 14, 2025). 
8 Gridded Population of the World (GPW), v4. Socioeconomic Data and Applications Center (SEDAC). Available at: 

https://beta.sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-rev10 (April 17, 2025). 
9 Gridded Population of the World, Version 4 (GPWv4): Population Density Adjusted to Match 2015 Revision UN WPP 

Country Totals, Revision 11. Center for International Earth Science Information Network, Columbia University (CIESIN), 2018. 
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the reference level, against which all tempera-
ture-related risks were calculated. Therefore, 
the minimum level of relative mortality risk 
was equal to 1 [45]. This methodology is de-
scribed in greater detail in [46]. Time series 
were analyzed using quasi-Poisson regression; 
its formula can be written as: 

 

  
 

  
  

log
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intercept ns week df per year

cb ns T knots lag
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where  weekE Y  is expected value of weekly 
ASDR in the region; 

intercept  is the free equation member re-
flecting mean ASDR in the region; 

ns  ,   7  week df per year  is the natural 
cubic spline with 7 degrees of freedom for 
each observation year included in the analysis 
to allow for seasonality and long-term trends 
in mortality. 

The model  ( ,   3 ,cb ns T knots  
0,1,2,3)lag  is a distributed lag model 

(DLM), which is used for considering influ-
ence of temperatures on mortality risks allow-
ing for remote effects. 

The dose-response curve, which reflects 
the association between mortality risks and 
temperatures, was built using the natural cubic 
spline with three knots located evenly at the 
25th, 50th and 75th percentiles of temperature 
distribution in each region. This approach 
makes it possible to most accurately describe 
non-linear relationships between temperature 
and mortality and is common in similar re-
search. Categorical variables were employed 
to take the lag structure into account. There-
fore, influence exerted by temperatures on 
mortality was estimated not only at the current 
moment but also considering their effects over 
three previous weeks. 

The parameter   logoffset Pop   is used 
in the library glm of the machine language R 
when mortality ratios are employed as a de-
pendent variable since both Poisson and quasi-

Poisson regression requires enumerable data 
analysis. Therefore, the logarithm of the mean 
population number over the respective period 
was introduced as an additional model parame-
ter to make mortality estimates in different re-
gions compatible with each other. 

The most optimal spline parameters as 
well as length and structure of lags were based 
on minimization of the Akaike information 
criterion (AIC) within modeling the dose-
response curves.  

A meta-analysis was performed to inves-
tigate regional dose-response relationship with 
its aim to obtain aggregated assessments of 
temperature-related risks [47, 48]. This ap-
proach makes it possible to combine results 
obtained for different regions allowing for 
variability between them due to using a meta-
regression model with random effects.  

The aggregated relationship between mor-
tality and temperatures was calculated for the 
whole country on the basis of regional assess-
ments; it was then used to adjust the latter. 
This involves using Best Linear Unbiased Pre-
dictors (BLUP), which consist of two compo-
nents. Primarily, they include parameters of 
dose-response curves obtained for each region 
at the first level of the analysis. Adjusting 
these assessments per their deviation from ag-
gregated results can raise accuracy of regional 
indicators. This BLUP component is random 
effects that have already been obtained by us-
ing meta-regression [47]. Regional variations 
of the MMT BLUP assessments were shown 
to present regional differences in the relation-
ship between mortality and temperatures;  
these variations were calculated based on  
each of three methods for temperature data ag-
gregation.  

All data were statistically analyzed in the 
RStudio integrated development environment. 
In particular, such libraries as glm, splines, 
dlnm, mvmeta and mixmeta were used for 
building aggregated dose-response curves for 
analysis [44]. 

Results and discussion. On average, 
weekly ASDRs taken over the whole analyzed 
period (2004–2019) turned out to be the high-
est in Chukotka (28.6 ‰), Tyva (26.5 ‰), the 
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Jewish Autonomous Area (24.6 ‰), and the 
Amur region (24.1 ‰). The lowest values 
were observed in Ingushetia (11.6 ‰), Mos-
cow (13.4 ‰), Dagestan (14.4 ‰), and Saint 
Petersburg (15.7 ‰). Mortality was declining 
quite rapidly in Russia over the whole ana-
lyzed period; in 2005, the mean weekly ASDR 
equaled 25.2 ‰ per all regions but it went 
down to 16.2 ‰ in 2019. It is noteworthy that 
these assessments are based on mean weekly 
mortality ratios; therefore, they can be rather 
different from annual mortality rates reported 
in other sources. 

Over the analyzed period, an all-time low 
mean weekly temperature was detected in late 
December 2024 in Yakutia. It was equal to  
-43.15 °C as recorded at ground-based obser-
vation stations, -45.01 °C when using 
weighted mean temperatures in municipalities, 
and -44.66 °C according to gridded reanalysis 
data. Mean weekly temperatures reached their 
peak in the Volgograd region during a heat 
wave in August 2010 when the peak mortality 
was detected there; they equaled 31.53 °C, 
32.18 °C and 32.34 °C for the same data 
sources respectively. All-time temperatures 
were registered both for extreme heat and ex-
treme cold in the same period regardless of 
which data source was used; quantitative esti-
mates also turned out to be quite similar.  

The total number of weekly observations 
amounted to 66,640 in all regions over  

2004–2019. Mean temperature values for re-
gions, which were obtained using different 
methods, showed high consistency (Table 1). 
The correlation coefficient between tempera-
ture time series was 0.991 when calculated us-
ing ground-based observation data. The corre-
lation coefficient between reanalysis data and 
aggregated regional data was 0.969 and 0.978 
between reanalysis data and weighted mean 
temperatures per municipalities.  

At the regional level, mean weekly tem-
peratures established by using three different 
methods showed not only a close linear con-
nection with each other but also absence of 
any shifts associated with systemic errors in 
most regions (Figures 1 and 2). However, 
estimates for temperatures above zero in 
general tended to be more consistent. Still, 
there were some exceptions, for example, 
Chukotka where data from meteorological 
stations obtained by using different aggrega-
tion methods were not consistent. Regional 
and municipal population centers in Chu-
kotka do not allow obtaining a comparable 
picture and due to it estimates based on us-
ing different methods are not consistent with 
each other. Similar, although less apparent, 
differences were found in some other regions 
with low population density and uneven 
population distribution, in particular, in the 
Tyumen region, Krasnoyarskii Krai and the 
Altai Republic. 

T a b l e  1  
Descriptive statistics of time series of weekly data over 2004–2019 per 80 regions used at the 

first level of analysis for three models, each of which relies on temperatures calculated by using 
diriment methods  

Indicator 1st quartile Median Mean 3rd quartile 
Dependent variable: 

Weekly ASDR, per 1 thousand people 17.20 19.50 20.08 22.40 
Independent variables: 

Mean weekly temperatures detected at ground-based stations 
per municipalities, °C -3.509 5.600 4.728 15.067 

Mean weekly temperatures detected at ground-based stations 
per regions, °C -3.468 5.586 4.727 15.064 

Mean weekly temperatures based on reanalysis (EAC4), °C -3.625 5.369 4.499 14.767 

Note: results of the author’s calculations using RDSTFM, Aisori-М, and EAC4 data 
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Figure 1. The graph to show spreads of mean weekly temperature estimates over 2004–2019 obtained by 
aggregating point data allowing for population centers in regions and EAC4 reanalysis data weighted per 

population density (RF regions are given with different colors; estimates for Chukotka are red; based on the 
author’s calculations using Aisori-М, EAC4) 

 
Figure 2. The graph to show spreads of mean weekly temperature estimates over 2004–2019 obtained by 

aggregating point data allowing for population centers in municipalities and EAC4 reanalysis data weighted per 
population density (RF regions are given with different colors; based on the author’s calculations using Aisori-М, 

EAC4) 
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The dose-response curves that show the 
relationship between mortality and tempera-
ture were obtained for the whole country by 
using meta-regression; they have similar 
shape, which corresponds to the most com-
mon relationship between mortality and tem-
peratures. Both cold and heat cause a rise in 
mortality risks; for most RF regions, MMT is 
within 15–20 °C, which is consistent with 
conclusions made in most other studies [3]. 
However, risks related to extreme cold turned 
out to be more statistically significant. 

This is not consistent with the results re-
ported in many studies where the highest risks 
are considered to be associated with heat [11] 
and might be due to two factors. First, a con-
siderably long lag (3 weeks) was used in this 
study, which makes it possible to take remote 
cold-related effects into account more effec-
tively. Heat-related risks usually turn out to be 
much higher when associations between tem-
peratures and mortality are considered within a 
week and without allowing for lags. However, 
such a model based on statistical indicators 
tends to have weaker predictive ability. Sec-
ondly, our results are consistent with conclu-
sions made in other Russian epidemiological 
studies where mortality risks are often higher 
during cold waves than heat ones10 [22]. In 
any case, this estimate is only an averaged pic-
ture based on aggregated data from different 
regions with considerably different conditions.  

The aggregated estimated minimum mor-
tality temperature was found to be equal to 
19.12 °C when using ground-based observation 
data aggregated per regions. The MMT was 
19.34 °C for mean weighted temperatures per 
municipalities and 17.17 °C for reanalysis data. 
In terms of long-term temperature distribution, 
the MMT corresponded to the 88.4th, 88.8th 
and 83.0th percentile respectively. These rela-
tively high percentile values can be explained 
by climatic peculiarities of Russia where winter 
season is very long in most regions; this is not 
observed in other regions where similar re-
search has been accomplished [45, 49]. 

The shapes of the dose-response curves 
built relying on ground-based observations 
were very similar to each other for the whole 
range of the observed temperatures. Risks re-
lated to extreme temperatures turned out to be 
slightly higher for data based on regional es-
timates; the difference was insignificant 
though. More substantial inconsistencies were 
found between the results based on gridded 
data and aggregated ground-based observa-
tions. They were particularly substantial for 
extremely high temperatures (Figure 3). 

 
Figure 3. Assessments of temperature-related mortality 
risks obtained by using different methods: the dotted 
line show 1-th, 10-th, 90-th and 99th percentiles of 

temperature distribution in all Russian regions over the 
analyzed period (2004–2019) (based on the author’s 
calculations using RDSTFM, Aisori-М, and EAC4) 

Point estimates of relative risks at certain 
boundary values, for example, 95th or 99th 
percentiles of long-term temperature distribu-
tion for heat-related effects, can be used as 
indicators of mortality risks associated with 
extreme temperatures [50]. Thus, relative 
risks of deaths due to extreme cold based on 
temperature reanalysis data turned out to be 
lower than those established using ground-
based observations. 

__________________________ 
 

10 Donaldson G.C., Tchernjavskii V.E., Ermakov S.P., Bucher K., Keatinge W.R. Winter mortality and cold stress in 
Yekaterinburg, Russia: interview survey. BMJ, 1998, vol. 316, no. 7130, pp. 514–518. DOI: 10.1136/bmj.316.7130.514 
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Differences in risks for the upper percen-
tiles of long-term mean weekly temperature 
distribution turned out to be much more sig-
nificant. Relative mortality risks were equal to 
approximately 1.02 for the 99th percentile 
based on meteorological observations in the 
distributed lag model whereas they were 1.07 
for gridded data and the difference turned out 
to be significant (Table 2). It should be noted 
that temperatures corresponding to these per-
centiles did not differ very much. 

On average, BLUP values of MMT esti-
mates per regions that were calculated using 
ground-based observations turned out to be  
2–3 °C degrees higher than estimates based on 
using gridded data. In most cases, calculations 
based on using different methods yielded con-
sistent results. Within federal districts, regions 
located further to the south with higher tem-
peratures, as a rule, tended to have higher 
MMT values (the Belgorod Region in the Cen-
tral Federal District, Kalmyk Republic in the 
Southern Federal District, the Saratov region 
in the Volga Federal District). However, it was 
not the case everywhere; for example, the 
Komi Republic in the North-Western Federal 
District was an exception.  

We did not find any interrelations be-
tween ASDR and MMT levels. Although re-
gions with higher mortality rates are, as a rule, 
located in colder climate, this did not have any 
influence on the ultimate regional differentia-

tion. MMT corresponded to 75–85th percen-
tiles of long-term temperature distribution in 
most regions when reanalysis data were used 
to estimate it. MMT established by using me-
teorological data was, as a rule, between the 
80th and 90th percentiles. No values below the 
70th percentile were detected whereas they 
were close to the 99th percentile in some re-
gions (Kamchatka, Sakhalin, Komi, and 
Tyva), which is due to both cold climate and 
insufficient validity of BLUP estimates given 
small population numbers in them. 

The greatest discrepancies between MMT 
estimates obtained by using different methods 
were found in some sparsely populated regions 
with low density of meteorological station 
coverage, for example, in Chukotka, where 
their representativeness turned out to be lower 
for aggregated regional temperature estimates. 
Meteorological networks have greater cover-
age in the Central, Volga and Southern Federal 
Districts and physical-geographic characteris-
tics of regions in them do not differ greatly; 
given that, BLUP estimates of MMT turned 
out to be the most consistent. However, some 
specific regions, for example, Adygei, the 
Ivanovo region, the Arkhangelsk region, Pri-
mor’e, Yakutiya and Saint Petersburg showed 
abnormal spreads in MMT estimates between 
all three of them. This can be explained by 
data aggregation artifacts and failure to allow 
for local climatic peculiarities (Figure 4). 

T a b l e  1  
Relative risks related to extreme temperatures, calculated using different methods for the 1st, 

5th, 95th and 99th percentiles of temperature distribution in all Russian regions over the 
analyzed period (2004–2019) 

Data aggregation method 1st percentile to 
MMT 

5th percentile to 
MMT 

95th percentile to 
MMT 

99th percentile to 
MMT 

T, °C -26.39 -17.65 21.8 25.43 Ground-based observations per 
municipalities RR 1.272 (95 % CI: 

1.253–1.291) 
1.219 (95 % CI: 

1.203–1.236) 
1.004 (95 % CI: 

1.000–1.008) 
1.023 (95 % CI: 

1.012–1.035) 
T, °C -26.77 -17.63 21.74 25.31 Ground-based observations per 

regions RR 1.282 (95 % CI: 
1.262–1.302) 

1.223 (95 % CI: 
1.206–1.24) 

1.005 (95 % CI: 
1.001–1.009) 

1.025 (95 % CI: 
1.012–1.038) 

T, °C -26.62 -17.89 21.41 25.05 
Based on reanalysis (EAC4) 

RR 1.264 (95 % CI: 
1.245–1.283) 

1.218 (95 % CI: 
1.202–1.235) 

1.021 (95 % CI: 
1.013–1.028) 

1.066 (95 % CI: 
1.048–1.085) 
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Figure 4. BLUP estimates of MMT for temperatures calculated using different methods, per RF regions over  

2004–2019 (based on the author’s calculations using RDSTFM, Aisori-М, and EAC4) 

The resulting estimates of the relationship 
between mortality and temperatures have the 
J-like shape where cold-related risks prevail. 
These data allow calculating the temperature 
stress burden and predict population losses due 
to climate change as well as to develop re-
gional measures for prevention and prophy-
laxis of negative outcomes caused by tempera-
ture exposures. 

Experience gained by Russian researchers 
does not allow unambiguously identify what 
risks (cold- or heat-related ones) are more sig-
nificant since conclusions depend on geo-
graphical coverage and a methodology [26]. 
Prevalence of cold-related risks in this study 
might be due to using a model with distributed 
lags, which considers temperature effects over 
three weeks. This method is eligible for ana-
lyzing annual dynamics but tends to underes-
timate mortality caused by heat waves [41]. 
Moreover, weekly data do not consider short-
term effects produced by high temperatures, 
which are usually manifested several days af-
ter an exposure [44]. This might also make for 
underestimation of mortality related to high 
temperatures. It is also important to remember 
that all-cause mortality was analyzed in this 
study, including external causes that held a 
significant place in the beginning of the ana-

lyzed period. Clear relationships with tempera-
tures have not been established for many ex-
ternal causes of death, which makes it difficult 
to identify them on the example of the em-
ployed data.  

We did not find a significant relationship 
between initial ASDR values and temperature 
risks. A considerable proportion of deaths oc-
cur due to external causes and alcohol poison-
ing in regions with high mortality rates; these 
death causes have a very weak relationship 
with temperatures. Therefore, the overall mor-
tality rate did not have any substantial influ-
ence on the relationship between temperature 
and mortality.  

Regional differences in MMT reflect re-
gional natural and climatic peculiarities. MMT 
tends to be higher in warmer regions, which is 
explained by people getting adapted to prevail-
ing conditions [49]. MMT values similar to 
those established in most Russian regions  
(15–18 °C) were also observed in cities in 
Finland, Sweden, and Norway [45]. The best 
estimates are those based on reanalysis in ac-
cordance with percentiles of temperature dis-
tribution that correspond to MMT. As a rule, 
percentiles with minimum mortality risks are 
also between the 75th and 85th percentiles in 
similar climatic conditions [49]. A decline in 
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MMT at higher latitudes and lower mean an-
nual temperatures reflects differences in adap-
tation potential of the Russian population. 

Abnormally low MMT values were found 
in some regions, for example, in the Magadan 
region or Chukotka; this might be associated 
with high spreads in the data collected for 
these regions and low validity of the model. 
On the contrary, MMT turned out to be over-
estimated in Kamchatka, Komi, and the Zabai-
kal’skii Krai, where they were close to the 
maximum percentiles. In case when meteoro-
logical data are used, this can be related to low 
quality of initial data and peculiarities of 
BLUP-estimates. 

In this study, assessments of temperature-
related mortality risks obtained by various 
methods at the regional level turned out to be 
similar, which is consistent with the results re-
ported in other studies [15, 30, 50–53]. More-
over, even a quite large aggregation level, both 
as regards time (per weeks) and space (per RF 
regions), in general, did not influence compara-
bility of the obtained assessments.  

Uneven distribution of meteorological 
stations was another difficulty. Most such sta-
tions were located in large settlements, which 
made them less representative for sparsely 
populated areas. The study [54] recommends 
considering stations located with the 50-km 
radius from the regional center to calculate 
temperatures. In [29] and in this study,  
a 200-km distance was used, which allowed 
increasing the sample size and make esti-
mates more stable.  

The dose-response curves based on vari-
ous data sources were similar. However, heat-
related risks turned out to be higher when re-
analysis data were used. Other studies also re-
ported the greatest discrepancies for high tem-
peratures whereas cold-related risks remained 
comparable. In some studies, gridded data also 
overestimated heat-related risks [30], but an 
opposite trend was observed in some other 
cases [15, 52, 54]. 

Atmospheric reanalyses based on model-
ing do not always allow for local micro-
geographical effects and extreme tempera-
tures due to data averaging. However, mete-

orological observations are not representative 
either for such large areas due to uneven  
coverage. 

The smallest discrepancies between data 
sources were found in regions with even popu-
lation distribution and flat terrains. In other 
cases, certain problems occurred. The esti-
mates were the most inconsistent in Chukotka; 
excessive number of meteorological stations 
that reflected local conditions rather poorly 
was used in Adygei; the reanalysis data were 
distorted in Saint Petersburg because the city 
is located so close to the sea [51]. 

Therefore, estimates of temperatures and 
related risks based on different data sources 
are consistent in the simplest cases only. Re-
analyses are preferable in regions where a me-
teorological network has low density whereas 
meteorological data are more eligible for 
analysis within cities. Meteorological data are 
available in real time, which is very conven-
ient for operative estimates; however, they can 
have some gaps or be fragmentary. Reanalysis 
data are more eligible for long-term series due 
to their wide coverage and completeness pro-
vided that reanalyses have been created fol-
lowing the same methodology.  

When comparing approaches to aggrega-
tion of meteorological data, we found tempera-
ture estimates per municipalities to be more 
effective than those made per regions. The 
population center poorly reflects actual popu-
lation density in large and sparsely populated 
areas thereby reducing data accuracy. There-
fore, a more correct solution would be to esti-
mate mean temperatures at a sub-regional level 
with subsequent aggregation of the results for 
a region as a whole. 

Problems and limitations. In this study, 
temperature-related risks were estimated at the 
regional level in Russia and various sources of 
temperature data were compared as regards 
their eligibility. The study findings are consis-
tent with conclusions made by other research-
ers, who used more detailed data and analyzed 
short-term fluctuations in mortality. However, 
several limitations should be considered since 
they may have influenced interpretation of the 
obtained results.  
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Firstly, despite overall stability of time se-
ries of mortality in most regions, the data were 
found to be highly volatile in some of them 
(for example, Chukotka and the Magadan re-
gion). This made it difficult to obtain authentic 
results, although use of meta-analysis was a 
partial solution to the problem. Nevertheless, 
we were not able to obtain adequate estimates 
of temperature-related mortality risks for some 
regions.  

Secondly, specification of the dose-
response function may have influenced the 
modeling results. Although we used the best 
values of information criteria in the selected 
model, location of spline knots and lag structure 
might have distorted the ultimate estimates. 

Thirdly, the analysis was limited by ab-
sent data on ambient air pollution. In Russia, 
such data are available at the regional level 
only within reanalyses since the country does 
not have an extensive network for observation 
of ambient air quality with open and accessible 
data. Therefore, we were not able to include 
such data in our analysis. 

Conclusions. The aim of this study was to 
analyze temperature-related mortality using 
data of atmospheric reanalysis EAC4 and me-
teorological observations. Regional tempera-
tures were calculated using three different 
methods, which showed similar patterns of 
time series.  

The relationship between mortality and 
temperatures in Russian regions had a J-like 
shape: risks were higher at low temperatures. 
Thus, relative risks reached 1.25 for the 1st 
percentile whereas they were 1.02 (according 

to meteorological data) and 1.07 (according to 
reanalysis) for the 99th percentile. This is due 
to considering lag effects on health produced 
by temperature exposures over several weeks, 
which makes it possible to allow for negative 
outcomes of cold exposure more effectively. 

In most regions, MMT was within  
15–20 °C corresponding to 75–85th percentiles 
of temperature distribution (per reanalysis 
data). Minimum mortality temperatures turned 
out to be several degrees higher when meteoro-
logical data were used. Optimal temperatures 
are often higher in warm regions and this indi-
cates people’s adaptation to prevailing condi-
tions. Knowledge on threshold risk levels al-
lows more effective assessment of threat for 
people’s lives and health and helps develop 
relevant measures for preventing negative out-
comes of temperature exposures. Such meas-
ures include systems for notifying, informing 
and warning people about a coming heat or cold 
wave. 

Both data sources were found to be appli-
cable for the task; however, meteorological 
data tended to become less authentic in 
sparsely populated regions with low density of 
meteorological observation networks and this 
influenced consistency of risk assessments. 
For example, the minimum mortality tempera-
ture tended to be overestimated per meteoro-
logical data relative to reanalysis data. 
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