On assessing the potential risk of dose-dependent hepatotoxic effects of selenium oxide nanoparticles

UDC: 
613.6.02
Authors: 

M.P. Sutunkova1,2, I.A. Minigalieva1, V.G. Panov1,3, T.V. Makhorina1, M.S. Unesikhina1, I.G. Shelomentsev1, R.R. Sakhautdinova1

Organization: 

1Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov St., Yekaterinburg, 620014, Russian Federation
2Ural State Medical University, 3 Repin St., Yekaterinburg, 620028, Russian Federation
3Institute of Industrial Ecology of the Ural Branch of the Russian Academy of Sciences, 20 Sofia Kovalevskaya St., Ekaterinburg, 620990, Russian Federation

Abstract: 

Selenium nanoparticles (Se NPs) have found wide application in many human economic activities. Therefore, it is necessary to predict and assess emerging potential health risks. Nanotoxicants can affect the body causing negative effects that have a non-linear dependence on the dose of a toxic substance. There is no consensus on the LD50 of Se NPs. Recent data on the dose-dependent liver response to different exposures of selenium nanoparticles are contradictory.

The aim is to study and characterize potentially adverse dose-dependent effects in the liver under exposure to selenium oxide nanoparticles in a subchronic experiment using mathematical models.

Exposure was modeled on male rats aged 3 to 4 months, 12 animals in each group. We used three levels of selenium nanoxide doses for subchronic exposure: 3.6, 18, and 36 mg/kg. The research was approved by the Local Ethics Committee of the Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers (Protocol No. 2 of April 20, 2021).

We observed an atypical dose-response relationship between selenium nanooxide exposure and hepatic changes. The negative effects included pronounced changes in mitochondria of liver cells as well as an imbalance of blood enzymes and cellular composition of the liver, which may indicate damage to the organ and impaired secretory functions following the exposure to low and moderate concentrations of SeO nanoparticles.

Our findings can be used for determining chemical safety standards for selenium oxide nanoparticles and assessing their health risks.

Keywords: 
nanoparticles, in vivo, dose-effect, selenium oxide, hepatotoxicity, Kupffer cells, hepatocytes, health risk
Sutunkova M.P., Minigalieva I.A., Panov V.G., Makhorina T.V., Unesikhina M.S., Shelomentsev I.G., Sakhautdinova R.R. On assessing the potential risk of dose-dependent hepatotoxic effects of selenium oxide nanoparticles. Health Risk Analysis, 2025, no. 2, pp. 114–125. DOI: 10.21668/health.risk/2025.2.10.eng
References: 
  1. Tsivileva O., Pozdnyakov A., Ivanova A. Polymer Nanocomposites of Selenium Biofabricated Using Fungi. Molecules, 2021, vol. 26, no. 12, pp. 3657. DOI: 10.3390/molecules26123657
  2. Constantinescu-Aruxandei D., Frîncu R.M., Capră L., Oancea F. Selenium Analysis and Speciation in Dietary Sup-plements Based on Next-Generation Selenium Ingredients. Nutrients, 2018, vol. 10, no. 10, pp. 1466. DOI: 10.3390/nu10101466
  3. Khurana A., Tekula S., Saifi M.A., Venkatesh P., Godugu C. Therapeutic applications of selenium nanoparticles. Bi-omed. Pharmacother., 2019, vol. 111, pp. 802–812. DOI: 10.1016/j.biopha.2018.12.146
  4. Lesnichaya M., Shendrik R., Titov E., Sukhov B. Synthesis and comparative assessment of antiradical activity, toxicity, and biodistribution of κ‐carrageenan‐capped selenium nanoparticles of different size: in vivo and in vitro study. IET Nano-biotechnol., 2020, vol. 14, no. 6, pp. 519–526. DOI: 10.1049/iet-nbt.2020.0023.
  5. Fang X., Li C., Zheng L., Yang F., Chen T. Dual‐Targeted Selenium Nanoparticles for Synergistic Photothermal Therapy and Chemotherapy of Tumors. Chem. Asian J., 2018, vol. 13, no. 8, pp. 996–1004. DOI: 10.1002/asia.201800048
  6. Lesnichaya M., Perfileva A., Nozhkina O., Gazizova A., Graskova I. Synthesis, toxicity evaluation and determination of possible mechanisms of antimicrobial effect of arabinogalactane-capped selenium nanoparticles. J. Trace Elem. Med. Biol., 2022, vol. 69, pp. 126904. DOI: 10.1016/j.jtemb.2021.126904
  7. Dukhnovsky E.A. Application of Selenium Nanoparticles in Oncology (Review). Drug development and registration, 2023, vol. 12, no. 2, pp. 34–43. DOI: 10.33380/2305-2066-2023-12-2-34-43 (in Russian).
  8. Bano I., Skalickova S., Arbab S., Urbankova L., Horky P. Toxicological effects of nanoselenium in animals. J. Anim. Sci. Biotechnol., 2022, vol. 13, no. 1, pp. 72. DOI: 10.1186/s40104-022-00722-2
  9. Abd El-Kader M.F., Fath El-Bab A.F., Abd-Elghany M.F., Abdel-Warith A.-W.A., Younis E.M., Dawood M.A.O. Se-lenium Nanoparticles Act Potentially on the Growth Performance, Hemato-Biochemical Indices, Antioxidative, and Immune-Related Genes of European Seabass (Dicentrarchus labrax). Biol. Trace Elem. Res., 2021, vol. 199, no. 8, pp. 3126–3134. DOI: 10.1007/s12011-020-02431-1
  10. Liu X., Mao Y., Huang S., Li W., Zhang W., An J., Jin Y., Guan J. [et al.]. Selenium nanoparticles derived from Pro-teus mirabilis YC801 alleviate oxidative stress and inflammatory response to promote nerve repair in rats with spinal cord injury. Regen. Biomater., 2022, vol. 9, pp. rbac042. DOI: 10.1093/rb/rbac042
  11. Vinceti M., Filippini T., Jablonska E., Saito Y., Wise L.A. Safety of selenium exposure and limitations of selenoprotein maximization: Molecular and epidemiologic perspectives. Environ. Res., 2022, vol. 211, pp. 113092. DOI: 10.1016/j.envres.2022.113092
  12. Hadrup N., Loeschner K., Mandrup K., Ravn-Haren G., Frandsen H.L., Larsen E.H., Lam H.R., Mortensen A. Subacute oral toxicity investigation of selenium nanoparticles and selenite in rats. Drug Chem. Toxicol., 2019, vol. 42, no. 1, pp. 76–83. DOI: 10.1080/01480545.2018.1491589
  13. Singh H., Kaur J., Datusalia A.K., Naqvi S. Age-Dependent Assessment of Selenium Nanoparticles: Biodistribution and Toxicity Study in Young and Adult Rats. Nanomedicine (Lond.), 2023, vol. 18, no. 27, pp. 2021–2038. DOI: 10.2217/nnm-2023-0204
  14. Urbankova L., Skalickova S., Pribilova M., Ridoskova A., Pelcova P., Skladanka J., Horky P. Effects of Sub-Lethal Doses of Selenium Nanoparticles on the Health Status of Rats. Toxics, 2021, vol. 9, no. 2, pp. 28. DOI: 10.3390/toxics9020028
  15. Loeschner K., Hadrup N., Hansen M., Pereira S.A., Gammelgaard B., Hyrup Møller L., Mortensen A., Lam H.R., Larsen E.H. Absorption, distribution, metabolism and excretion of selenium following oral administration of elemental selenium nanoparticles or selenite in rats. Metallomics, 2014, vol. 6, no. 2, pp. 330–337. DOI: 10.1039/c3mt00309d
  16. He Y., Chen S., Liu Z., Cheng C., Li H., Wang M. Toxicity of selenium nanoparticles in male Sprague–Dawley rats at supranutritional and nonlethal levels. Life Sci., 2014, vol. 115, no. 1–2, pp. 44–51. DOI: 10.1016/j.lfs.2014.08.023
  17. Chaudière J. Biological and Catalytic Properties of Selenoproteins. Int. J. Mol. Sci., 2023, vol. 24, no. 12, pp. 10109. DOI: 10.3390/ijms241210109
  18. Lesnichaya M., Karpova E., Sukhov B. Effect of high dose of selenium nanoparticles on antioxidant system and bio-chemical profile of rats in correction of carbon tetrachloride-induced toxic damage of liver. Colloids Surf. B Biointerfaces, 2021, vol. 197, pp. 111381. DOI: 10.1016/j.colsurfb.2020.111381
  19. Dumore N.S., Mukhopadhyay M. Antioxidant properties of aqueous selenium nanoparticles (ASeNPs) and its catalysts activity for 1, 1-diphenyl-2-picrylhydrazyl (DPPH) reduction. Journal of Molecular Structure, 2020, vol. 1205, pp. 127637. DOI: 10.1016/j.molstruc.2019.127637
  20. Sohrabi A., Tehrani A.A., Asri-Rezaei S., Zeinali A., Norouzi M. Histopathological assessment of protective effects of selenium nanoparticles on rat hepatocytes exposed to Gamma radiation. Vet. Res. Forum, 2020, vol. 11, no. 4, pp. 347–353. DOI: 10.30466/vrf.2018.93499.2260
  21. Zhang Z., Du Y., Liu T., Wong K.-H., Chen T. Systematic acute and subchronic toxicity evaluation of polysaccharide–protein complex-functionalized selenium nanoparticles with anticancer potency. Biomater. Sci., 2019, vol. 7, no. 12, pp. 5112–5123. DOI: 10.1039/C9BM01104H
  22. Ibrahim S.E., Alzawqari M.H., Eid Y.Z., Zommara M., Hassan A.M., Dawood M.A.O. Comparing the Influences of Selenium Nanospheres, Sodium Selenite, and Biological Selenium on the Growth Performance, Blood Biochemistry, and Antioxidative Capacity of Growing Turkey Pullets. Biol. Trace Elem. Res., 2022, vol. 200, no. 6, pp. 2915–2922. DOI: 10.1007/s12011-021-02894-w
  23. Kondaparthi P., Deore M., Naqvi S., Flora S.J.S. Dose-dependent hepatic toxicity and oxidative stress on exposure to nano and bulk selenium in mice. Environ. Sci. Pollut. Res., 2021, vol. 28, no. 38, pp. 53034–53044. DOI: 10.1007/s11356-021-14400-9
  24. Zhao H., Liu C., Song J., Fan X. Pilot study of toxicological safety evaluation in acute and 28‐day studies of selenium nanoparticles decorated by polysaccharides from Sargassum fusiforme in Kunming mice. J. Food Sci., 2022, vol. 87, no. 9, pp. 4264–4279. DOI: 10.1111/1750-3841.16289
  25. Zhang J., Wang X., Xu T. Elemental Selenium at Nano Size (Nano-Se) as a Potential Chemopreventive Agent with Reduced Risk of Selenium Toxicity: Comparison with Se-Methylselenocysteine in Mice. Toxicol. Sci., 2008, vol. 101, no. 1, pp. 22–31. DOI: 10.1093/toxsci/kfm221
  26. Sampath S., Sunderam V., Manjusha M., Dlamini Z., Lawrance A.V. Selenium Nanoparticles: A Comprehensive Ex-amination of Synthesis Techniques and Their Diverse Applications in Medical Research and Toxicology Studies. Molecules, 2024, vol. 29, no. 4, pp. 801. DOI: 10.3390/molecules29040801
  27. Wang H., Zhang J., Yu H. Elemental selenium at nano size possesses lower toxicity without compromising the fun-damental effect on selenoenzymes: Comparison with selenomethionine in mice. Free Radic. Biol. Med., 2007, vol. 42, no. 10, pp. 1524–1533. DOI: 10.1016/j.freeradbiomed.2007.02.013
  28. Ryabova Yu.V., Sutunkova M.P., Chemezov A.I., Minigalieva I.A., Bushueva T.V., Shelomentsev I.G., Klinova S.V. Evaluation of Effects of Selenium Nanoparticles as an Occupational and Environmental Chemical Hazard on Cellular Bioenergetic Processes. ZNiSO, 2022, no. 9, pp. 29–34. DOI: 10.35627/2219-5238/2022-30-9-29-34 (in Russian).
  29. Panov V., Minigalieva I., Bushueva T., Fröhlich E., Meindl C., Absenger-Novak M., Shur V., Shishkina E. [et al.]. Some Peculiarities in the Dose Dependence of Separate and Combined In Vitro Cardiotoxicity Effects Induced by CdS and PbS Nanoparticles With Special Attention to Hormesis Manifestations. Dose Response, 2020, vol. 18, no. 1, pp. 1559325820914180. DOI: 10.1177/1559325820914180
  30. Liu Y., Chen X., Duan S., Feng Y., An M. Mathematical Modeling of Plant Allelopathic Hormesis Based on Ecologi-cal-Limiting-Factor Models. Dose Response, 2010, vol. 9, no. 1, pp. 117–129. DOI: 10.2203/dose-response.09-050.Liu
  31. Weiss B. The intersection of neurotoxicology and endocrine disruption. Neurotoxicology, 2012, vol. 33, no. 6, pp. 1410–1419. DOI: 10.1016/j.neuro.2012.05.014
  32. Ge H.-L., Liu S.-S., Zhu X.-W., Liu H.-L., Wang L.-J. Predicting Hormetic Effects of Ionic Liquid Mixtures on Lucif-erase Activity Using the Concentration Addition Model. Environ. Sci. Technol., 2011, vol. 45, no. 4, pp. 1623–1629. DOI: 10.1021/es1018948
  33. Zhu X.-W., Liu S.-S., Qin L.-T., Chen F., Liu H.-L. Modeling non-monotonic dose–response relationships: Model evaluation and hormetic quantities exploration. Ecotoxicol. Environ. Saf., 2013, vol. 89, pp. 130–136. DOI: 10.1016/j.ecoenv.2012.11.022
  34. Nweke C.O., Ogbonna C.J. Statistical models for biphasic dose-response relationships (hormesis) in toxicological studies. Ecotoxicology and Environmental Contamination, 2017, vol. 12, no. 1, pp. 39–55. DOI: 10.5132/eec.2017.01.06
  35. Wang H., He Y., Liu L., Tao W., Wang G., Sun W., Pei X., Xiao Z. [et al.]. Prooxidation and Cytotoxicity of Selenium Nanoparticles at Nonlethal Level in Sprague-Dawley Rats and Buffalo Rat Liver Cells. Oxid. Med. Cell. Longev., 2020, vol. 2020, pp. 7680276. DOI: 10.1155/2020/7680276
  36. Godoy P., Hewitt N.J., Albrecht U., Andersen M.E., Ansari N., Bhattacharya S., Bode J.G., Bolleyn J. [et al.]. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch. Toxicol., 2013, vol. 87, no. 8, pp. 1315–1530. DOI: 10.1007/s00204-013-1078-5
  37. Bilzer M., Roggel F., Gerbes A.L. Role of Kupffer cells in host defense and liver disease. Liver Int., 2006, vol. 26, no. 10, pp. 1175–1186. DOI: 10.1111/j.1478-3231.2006.01342.x
  38. Hu Y., Wang R., An N., Li C., Wang Q., Cao Y., Li C., Liu J., Wang Y. Unveiling the power of microenvironment in liver regeneration: an in-depth overview. Front. Genet., 2023, vol. 14, pp. 1332190. DOI: 10.3389/fgene.2023.1332190
  39. Scott C.L., Zheng F., De Baetselier P., Martens L., Saeys Y., De Prijck S., Lippens S., Abels C. [et al.]. Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells. Nat. Commun., 2016, vol. 7, pp. 10321. DOI: 10.1038/ncomms10321
  40. David B.A., Rezende R.M., Antunes M.M., Morais Santos M., Freitas Lopes M.A., Barros Diniz A., Vaz Sousa Perei-ra R., Cozzer Marchesi S. [et al.]. Combination of Mass Cytometry and Imaging Analysis Reveals Origin, Location, and Func-tional Repopulation of Liver Myeloid Cells in Mice. Gastroenterology, 2016, vol. 151, no. 6, pp. 1176–1191. DOI: 10.1053/j.gastro.2016.08.024
  41. Wang J., Kubes P. Reservoir of Mature Cavity Macrophages that Can Rapidly Invade Visceral Organs to Affect Tissue Repair. Cell, 2016, vol. 165, no. 3, pp. 668–678. DOI: 10.1016/j.cell.2016.03.009
  42. Kanta J. Collagen matrix as a tool in studying fibroblastic cell behavior. Cell Adh. Migr., 2015, vol. 9, no. 4, pp. 308–316. DOI: 10.1080/19336918.2015.1005469
  43. Torok N.J., Dranoff J.A., Schuppan D., Friedman S.L. Strategies and endpoints of antifibrotic drug trials: Summary and recommendations from the AASLD Emerging Trends Conference, Chicago, June 2014. Hepatology, 2015, vol. 62, no. 2, pp. 627–634. DOI: 10.1002/hep.27720
  44. Goh Y.P.S., Henderson N.C., Heredia J.E., Eagle A.R., Odegaard J.I., Lehwald N., Nguyen K.D., Sheppard D. [et al.]. Eosinophils secrete IL-4 to facilitate liver regeneration. Proc. Natl Acad. Sci. USA, 2013, vol. 110, no. 24, pp. 9914–9919. DOI: 10.1073/pnas.1304046110
  45. Yang Y., Xu L., Atkins C., Kuhlman L., Zhao J., Jeong J.-M., Wen Y., Moreno N. [et al.]. Novel IL-4/HB-EGF-dependent crosstalk between eosinophils and macrophages controls liver regeneration after ischaemia and reperfusion injury. Gut, 2024, vol. 73, no. 9, pp. 1543–1553. DOI: 10.1136/gutjnl-2024-332033
  46. Michalopoulos G.K., Bhushan B. Liver regeneration: biological and pathological mechanisms and implications. Nat. Rev. Gastroenterol. Hepatol., 2021, vol. 18, no. 1, pp. 40–55. DOI: 10.1038/s41575-020-0342-4
  47. Attarilar S., Yang J., Ebrahimi M., Wang Q., Liu J., Tang Y., Yang J. The Toxicity Phenomenon and the Related Occurrence in Metal and Metal Oxide Nanoparticles: A Brief Review From the Biomedical Perspective. Front. Bioeng. Biotechnol., 2020, vol. 8, pp. 822. DOI: 10.3389/fbioe.2020.00822
Received: 
20.03.2025
Approved: 
21.05.2025
Accepted for publication: 
22.06.2025

You are here