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Selenium nanoparticles (Se NPs) have found wide application in many human economic activities. Therefore, it is nec-

essary to predict and assess emerging potential health risks. Nanotoxicants can affect the body causing negative effects that 
have a non-linear dependence on the dose of a toxic substance. There is no consensus on the LD50 of Se NPs. Recent data on 
the dose-dependent liver response to different exposures of selenium nanoparticles are contradictory. 

The aim is to study and characterize potentially adverse dose-dependent effects in the liver under exposure to selenium 
oxide nanoparticles in a subchronic experiment using mathematical models. 

Exposure was modeled on male rats aged 3 to 4 months, 12 animals in each group. We used three levels of selenium 
nanoxide doses for subchronic exposure: 3.6, 18, and 36 mg/kg. The research was approved by the Local Ethics Committee 
of the Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers (Protocol No. 2 
of April 20, 2021). 

We observed an atypical dose-response relationship between selenium nanooxide exposure and hepatic changes. The 
negative effects included pronounced changes in mitochondria of liver cells as well as an imbalance of blood enzymes and 
cellular composition of the liver, which may indicate damage to the organ and impaired secretory functions following the 
exposure to low and moderate concentrations of SeO nanoparticles.  

Our findings can be used for determining chemical safety standards for selenium oxide nanoparticles and assessing 
their health risks. 
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Selenium nanoparticles (Se NPs) are gen-
erated in the course of human economic activi-
ties: in the metallurgical and chemical indus-
tries [1], in production of ceramics, glass, and 
electronics. Use of Se NPs in enrichment of 
food products and supplements [2], as drug 
carriers [3], antibacterial and anticancer drugs 
[4–7], for disease prevention in farm animals 
[8, 9] and in plant cultivation can pose health 
risks from excessive accumulation of selenium 
compounds in the body not only to industrial 
workers but also to the general population. 
When analyzing biological effects of nano-
selenium, it is necessary to take into account 
toxicity of NPs determined by physical proper-
ties and specific characteristics of the chemical 
elements that form them. Se NPs exhibit pro- 
or antioxidant activity depending on the dose 
and exposure duration [4, 5, 10]. It has been 
experimentally proven that smaller Se NPs 
(sized 6.8 nm) have greater penetrating ability 
and accumulation in organs, higher activity in 
replacing sulfur in sulfur-containing proteins 
when participating in the synthesis of seleno-
proteins [4, 11]. Bypassing the blood–brain 
barrier with small Se NPs (6.8 nm) leads to a 
decrease in the number of astrocytes [4], while 
larger Se NPs exhibit neuroprotective proper-
ties by increasing the number of neurons [10]. 
Adverse toxic effects of Se NPs are known to 
date. Oral administration of Se NPs to rats at 
the dose of 0.5 mg/kg body weight (b.w.) per 
day for 28 days induced local alopecia, a de-
crease in the body weight gain, and an increase 
in the relative weight of the liver [12]. Young 
rats demonstrated more intense accumulation 
of Se NPs, mainly in the liver, kidneys, and 
testicles, compared to adult rodents [13]. Se 
NPs accumulate in the liver [4, 14, 15], kid-
neys [4, 15], muscles, stomach, and blood 
[15]. They are potentially toxic to reproduction 
[16]. The liver is one of the key target organs 
for Se NPs. It facilitates conversion of Se NPs 
into selenocysteine and selenomethionine and 
their incorporation into enzymes [17]. Both 
pro-oxidant [18] and antioxidant activity of Se 
NPs [19] cause bioaccumulation of lipid per-

oxidation products in the liver [15]. The results 
of studying the dose-dependent effect of Se 
NPs on the liver seem contradictory: the func-
tional activity and histological picture of the 
liver change ambiguously. In some cases, the 
activity of alanine aminotransferase (ALT), 
aspartate aminotransferase (AST), and albu-
min in the blood remained unchanged, as in 
the 90-day experiment on fish at the doses of 
0.25, 0.5, and 1 mg Se NPs/kg feed [9]. No 
differences were observed in the activity of 
AST and alkaline phosphatase (ALP) in rats 
following intake of Se NPs containing 0.5, 1.5, 
3.0, and 5.0 mg Se/kg feed for 28 days; a sig-
nificant decrease in ALT activity was found in 
all exposed groups compared to the controls 
and a decrease in superoxide dismutase activ-
ity in the liver in the group receiving Se NPs at 
5 mg Se/kg (929 ± 103 U/mL) [14]. Several 
studies have noted a similar decrease in ALT, 
alone or in combination with AST [20, 22]. An 
increase in transaminases was noted in 28-day 
experiments on mice with oral administration 
of Se NPs sized 70–90 nm at 1 mg/kg feed and 
4 mg/kg b.w. [23] and that by gavage at the 
doses of 1/10–1/5 LD50 (LD50 = 88.76 Se 
mg/kg b.w.) [24]. An increase in transami-
nases [16, 25] and in alkaline phosphatase ac-
tivity [15] under effect of Se NPs was reported 
in earlier studies. 

Histopathological studies demonstrated 
the dose-dependent state of the liver paren-
chyma varying from the absence [12] or mild 
dystrophic changes in the groups of rats re-
ceiving Se NPs at the doses of 0.5–3.0 mg 
Se/kg b.w. for 28 days [14] and 2.0 and 
4.0 mg/kg b.w. for 14 days [16], to mild multi-
focal autolytic lesions with signs of congestion 
in the group receiving Se NPs at the dose of 
5.0 mg Se/kg [14], and hepatocyte death [16]. 

Nanosized selenium compounds have 
different degrees of toxicity [26], and this is 
the reason for differences in experimental 
findings relating to body weight gain, activity 
of liver and selenium-dependent enzymes, 
changes in the antioxidant system of the 
body, and the severity of histological damage. 
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The question about the median lethal dose of 
Se NPs remains open, possibly due to the 
choice of different biological objects for re-
search (fish, turkeys, mice, rats), but even for 
animals of the same species LD50 is uncer-
tain: in mice, it ranges, for instance, from 
61.6 mg Se/kg b.w. for SPF ICR mice [27] to 
2,000 mg/kg b.w. [4]. 

The study aimed to establish dose-
dependent hepatic effects of subchronic expo-
sure to selenium oxide nanoparticles posing 
potential health hazard using mathematical 
models. 

Materials and methods. Description of 
nanoparticles and the suspension. Selenium 
oxide nanoparticles (SeO NPs) in the form of a 
water-based suspension were generated at the 
Ural Center for Collective Use “Modern 
Nanotechnologies” of the Ural Federal Uni-
versity named after the First President of Rus-
sia B.N. Yeltsin. Scanning electron micros-
copy was used to confirm a nearly spherical 
shape and the size range of 37 to 65 nm  
(Figure 1). The nanoparticle concentration in 
the suspension (0.25 mg SeO/mL) was vali-
dated at a high zeta potential of up to 42 mV 
using a Zetasizer Nano ZS analyzer (Malvern 
Panalytical Ltd., UK). 

 
Figure 1. Suspended SeO nanoparticles 

 (SEM image at 20,200 × magnification) 

Laboratory animals and experimental ex-
posure. The study was conducted using out-
bred 3-4-month-old male rats with a body 
weight of 200 to 270 g. We divided the ani-

mals into a control group and three experimen-
tal groups of 12 rats each, the latter being ex-
posed to different doses of SeO NPs. Sub-
chronic exposure was modeled over 6 weeks 
by successive intraperitoneal injections of a 
stable suspension of SeO NPs made thrice a 
week. The “SeO NPs 3.6” group was adminis-
tered the total dose of SeO NPs equal to 
3.6 mg/kg b.w., the “SeO NPs 18” group – 
18 mg/kg b.w., the “SeO NPs 36” group – 
36 mg/kg b.w., and the control group received 
injections of deionized water at the same in-
tervals. Since there is no consensus on the 
LD50 of selenium NPs, the selection of doses 
and route of administration was carried out in 
a pilot experiment taking into account the use 
of chemically pure SeO NPs to obtain a sus-
pension similar to that used in our previous 
works [28]. Our findings are comparable with 
those of other research teams [21, 25]. 

The limitation of our study was the use of 
animals of the same species and sex. 

The study was approved by the Local Eth-
ics Committee of the Yekaterinburg Medical 
Research Center for Prophylaxis and Health 
Protection in Industrial Workers (protocol 
No. 2 of April 20, 2021). 

After exposure cessation, we performed 
biochemical testing of blood serum on a Cobas 
Integra 400 plus Roche analyzer (Switzerland) 
using ready-made diagnostic kits for determin-
ing transaminases and alkaline phosphatase. 

Morphological studies of liver cells and 
tissue. Cytological preparations were tested to 
identify post-exposure morphologic hepatic 
changes in all groups of animals. After 
Leishman staining, liver smears were exam-
ined by light microscopy at 100× and 1000× 
magnifications using a Primo Star microscope 
(Carl Zeiss, Germany) with a USCMOS visu-
alization video camera for 300 cells and the 
percentage composition of cells and the num-
ber of damaged cells were calculated. 

We scrutinized the histological picture of 
the liver of the control rats and those in the 
SeO NPs 36 exposure group receiving the 
maximum dose. Morphometric studies of 



On assessing the potential risk of dose-dependent hepatotoxic effects of selenium oxide nanoparticles       

ISSN (Print) 2308-1155 ISSN (Online) 2308-1163 ISSN (Eng-online) 2542-2308 117

enucleated hepatocytes (cytoplasts) and 
Kupffer cells were performed using the Avta-
ndilov grid. 

Electron microscopy. Ultrastructural cha-
racteristics of cell damage were determined 
according to the classification by Sun [13] us-
ing a high-resolution scanning electron micro-
scope Hitachi REGULUS SU8220 (Hitachi 
High-Technologies Corp., Japan) in the STEM 
mode. Based on the topological characteristics 
of the inner mitochondrial membrane (number 
of cristae, homogeneity and density of the ma-
trix), we distinguished normal mitochondria 
(type A) and a variant of normal vesicular mi-
tochondria (type B), as well as pathological 
forms, including vesicular (type C), vesicular 
swollen (type D), and swollen (type E) ones. 

Mathematical modeling and statistical 
analysis. Based on the obtained values of gen-
erally accepted indicators reflecting changes in 
liver functioning, we constructed the relation-
ship between the total dose of SeO NPs and its 
toxic effects on the liver using the following 
functions: 

 The modified Hill function (1) intro-
duced by Panov et al. [29]: 
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where b0, …, b7 are the parameters determined 
by the least squares method from experimental 
data; 

 The hyperbolic function (2) related to 
the Michaelis-Menten equation, which is used, 
for instance, to describe the rate of enzyme 
reactions [15]: 
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 The linear combination of Chebyshev 
polynomials (3). Chebyshev polynomials of 
the first kind are defined by the following 
equality: 
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Where [n/2] is the integer part of the number 
n/2 and 2k

nC  is the number of combinations of 
n by 2k; and 

 The modified Johnson – Lovett dose-
response model [29, 30]: 
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The statistical significance of intergroup 
differences in the mean values of all quantities 
was assessed using the Student’s t-test (p < 0.05) 
and the Mann – Whitney U test. 

Results and discussion. Damaging effects 
of SeO NPs on the liver were analyzed at the 
subcellular, cellular, tissue, and organ levels. 

Ultrastructural examination of liver cells 
using electron microscopy revealed a decrease 
in the number of type A and B mitochondria, 
attributed by Sun to the normal morphotype 
[13], ranging from 94.82 ± 0.95 % in the con-
trol to 87.44 ± 1.14 % in the SeO NPs 
36 group (p < 0.05). 

We detected changes at the cellular and 
tissue levels in rats after SeO NP exposure. 
Microscopy of histological liver preparations 
showed an increase in the proportions of cyto-
plasts and Kupffer cells (KC) in the SeO NPs 
36 group (p < 0.01). 

One of the manifestations of the damag-
ing effect of SeO NPs was an increase in the 
number of degenerated hepatocytes (Figure 2). 
The increase in their percentage in line with an 
increase in the exposure dose is described by a 
graph using a linear combination of Cheby-
shev polynomials (Formula 3). 

 
Figure 2. Changes in the proportion of degenerated 

hepatocytes in liver smears following SeO NP exposure 
(mean ± error of the mean) 
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At the lowest SeO NP exposure dose of 
3.6 mg/kg b.w., we observed a slight decrease 
in the percentage of degenerated hepatocytes, 
but at 18 mg/kg b.w., we detected the maxi-
mum number of damaged hepatocytes  
(p < 0.05), which decreased insignificantly at 
the highest exposure dose of 36 mg/kg b.w. 
Similar non-monotonicity of the response of 
biological objects was also noted by other au-
thors [31–34]. 

The non-linearity of the graphs of the re-
lationship between SeO NP concentrations and 
the amount of degenerated hepatocytes is ex-
plained by toxic damaging mechanisms of SeO 
NPs in the liver. At low doses (like 3.6 mg/kg 
b.w. chosen for the experiment), SeO NPs can 
be consumed for the synthesis of selenium-
containing enzymes, including thioredoxin re-
ductase, phospholipid hydroperoxide glu-
tathione peroxidase, and glutathione peroxi-
dase [17], and pose no serious threat. Yet, a 
multiple (here, 5-fold) increase in the SeO NP 
exposure causes damage to mitochondria, dis-
ruption of the genetic apparatus of cells, dam-
age to cells by oxidative stress products, and 
early apoptosis [15, 35]. 

At the same time, a decrease in the re-
parative potential of the liver is observed. 
Liver regeneration involves hepatocytes, 
which make up more than 60 % of the liver 
cell population [36], sinusoidal cells, 50 % of 
which are represented by Kupffer cells and 
leukocytes, connective tissue cells and the ex-
tracellular matrix [37]. 

The ability of the liver to regenerate was 
assessed by the proportions of Kupffer cells, 
leukocytes and binuclear hepatocytes (BH) in 
smears (Figures 3–6). The obtained function 
(Formula 4) for BH based on the modified 
Johnson–Lovett model [30] demonstrates a 
reduced reparative potential against the back-
ground of SeO NP accumulation. According to 
modern concepts, the appearance of binuclear 
cells occurs as a result of hepatocyte mitosis 
without cytotomy or amitotic division of hepa-
tocytes and accompanies reparative regenera-
tion of the damaged liver [38]. 

 
Figure 3. Changes in the proportion of binuclear 

hepatocytes in liver smears following SeO NP exposure 
(mean ± error of the mean) 

 
Figure 4. Changes in the proportion of Kupffer cells in 
liver smears following SeO NP exposure (mean ± error 

of the mean) 

In the absence of a response to the low 
dose of SeO NPs, we revealed a stable tendency 
towards a decrease in the proportion of binu-
clear hepatocytes with a multiple increase in the 
total dose of NPs to 18 and 36 mg/kg b.w. 

At the lowest tested dose of 3.6 mg/kg 
b.w., the percentage of BH remained similar 
to that in the control group. With an increase 
in the dose to 18 and 36 mg/kg b.w., an in-
crease in the percentage of DH (Figure 2) was 
accompanied by a decrease in the percentage 
of BH (Figure 3), indicating a decrease in the 
reparative ability of the liver (p < 0.01). 

In response to liver cell damage, macro-
phages migrate to the inflammation zone. 
Kupffer cells, as well as monocytes and neu-
trophils coming with the bloodstream, are the 
representatives of the macrophage commu-
nity. To describe the dose-dependent effect of 
SeO NPs on the proportion of Kupffer cells in 
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liver smears, we applied the variant with a 
linear combination of Chebyshev polynomials 
(Formula 3). 

The percentage of Kupffer cells in liver 
imprint smears decreased significantly fol-
lowing SeO NP exposure at 3.6 mg/kg b.w. 
and was more pronounced at 18 mg/kg b.w. 
(p < 0.05); however, upon reaching the con-
centration of 36 mg/kg b.w., the amount of 
those cells returned to its initial values, com-
parable with the control ones (Figure 4). 
Quantitative restoration of Kupffer cells is 
explained by in situ proliferation [39], the in-
flux and differentiation of blood monocytes 
into tissue macrophages [40, 41]. When cells 
are damaged, Kupffer cells and blood leuko-
cytes (monocytes, neutrophils, and eosino-
philic leukocytes) migrate to the site of in-
flammation and play an important role in the 
macrophage destruction of damaged cells and 
the replacement of degenerative cells with 
new cells and even other tissues [38]. Minor 
damage for a prolonged period can induce 
chronic inflammation and tissue replacement 
with connective tissue with fibrosis zones. 
That is why predicting damaging effects is so 
important. 

When comparing the graphs for degen-
erated hepatocytes (Figure 2) and Kupffer 
cells (Figure 4), it becomes obvious that 
fluctuations in the proportion of the latter 
can be associated with the destruction of 
hepatocytes by SeO NPs and reparative 
processes in the liver, which are supported 
by the proliferation of Kupffer cells and the 
influx from outside. During liver regenera-
tion, polymorphonuclear leukocytes, Kupffer 
cells, and endothelial cells secrete metallo-
proteinases (collagenases, gelatinases, elas-
tases, and other proteinases), changing the 
density of the extracellular matrix to deliver 
regulatory signals to all liver cells (cyto-
kines) thereby [42, 43]. The maximum de-
crease in the proportion of Kupffer cells 
upon exposure to SeO NPs at 18 mg/kg b.w. 
can be associated not only with the direct 
toxic effect of NPs on cells, but also with 

their migration to the lymph nodes associ-
ated with the antigen-presenting function. 

In case of macrophage deficiency, blood 
cells, specifically neutrophils and eosino-
philic leukocytes, join the process of remov-
ing damaged cells, the change in the percent-
age of which is associated with the activation 
of the inflammatory degenerative process in 
the liver. Neutrophils are attracted to the 
damaged liver by inflammation mediators 
[38]; yet, they themselves secrete a sufficient 
amount of chemoattractants to induce other 
cells to migrate towards them. The organism 
maintains the necessary and sufficient popu-
lation of neutrophils to participate in inflam-
mation. 

To describe the relationship between SeO 
NP exposure and the proportion of neutrophils 
found in imprint smears (Figure 5), we used a 
model [29] based on the Hill function (For-
mula 1), which reflected the tendency towards 
a decrease in the proportion of neutrophils in 
the smear under the toxic effect of NPs. 

 
Figure 5. Changes in the proportion of neutrophils in 

liver smears following SeO NP exposure (mean ± error 
of the mean) 

A comparable plateau-like decrease in the 
percentage of neutrophils in liver smears oc-
curs at low (3.6 mg/kg b.w.) and moderate 
(18 mg/kg b.w.) exposure doses of SeO NPs 
and is aggravated by the high one (36 mg/kg 
b.w.) (p < 0.05). 

A decrease in the percentage of neutro-
phils at low exposure doses leads to mobili-
zation of the body expressed by a slight in-
crease in the proportion of eosinophils  
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(Figure 6) in liver smears at higher SeO NP 
exposure doses (18 and 36 mg/kg b.w.). The 
dose-response relationship [30] for EL is 
shown in Figure 6. 

 

 
Figure 6. Changes in the proportion of eosinophilic 

lymphocytes in liver smears following SeO NP 
exposure (mean ± error of the mean) 

The graph of dose-dependent changes in 
the EL proportion in liver smears is notewor-
thy for its fluctuations related to inflamma-
tory response development. The destruction 
of EL at the lowest exposure dose of SeO NPs 
(3.6 mg/kg b.w.) with the release of cytotoxic 
EL granules contributes to tissue destruction, 
but, on the other hand, the release of inter-
leukin-4 (IL-4) stimulates liver regeneration 
[44, 45]. These findings presented by nonlin-
ear functions are explainable in terms of liver 
process regulations by migrating cells of the 
blood and immune system [38]. By producing 
cytokines (interleukins, chemokines, growth 
factors) and through direct contact, these cells 
control the expression of receptors of various 
liver cells, predetermining its regeneration 
process [46].  

Health and even life threatening disrup-
tion of vital organ and system functioning is 
associated with the ability of NPs to pene-
trate the bloodstream and cells of various 
organs [47]. The liver that is well-known for 
its detoxifying abilities and high blood sup-
ply is a target organ for SeO NPs [35]. Func-
tional changes in the liver are observed in 
animals exposed to SeO NPs, as shown, for 

instance, by serum enzymes. Maintaining the 
proportion of degenerated hepatocytes at the 
level of 11.0 to 12.33 % creates the prerequi-
sites for an increased release of enzymes into 
the blood. When cells are damaged, enzymes 
first leak into the intercellular fluid from the 
cytosol and lysosomes and then, in case of 
deeper damage, from mitochondria, ribo-
somes, and nucleus of these cells. The larger 
the lesion and depth of damage, the greater 
the enzyme concentration that enters the in-
tercellular space and blood. 

To assess the effect of SeO NPs on the 
activity of ALT and ALP in blood serum, we 
used the modified Johnson–Lovett model 
[30] for ALT (Figure 7) and a model close to 
the Michaelis–Menten equation for ALP 
when constructing the dose-effect relation-
ship (Figure 8). 

 
Figure 7. Changes in ALT activity in the blood 

following SeO NP exposure (mean ± error  
of the mean) 

 
Figure 8. Changes in the activity of alkaline 

phosphatase in the blood following SeO NP exposure 
(mean ± error of the mean) 
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The dose-effect responses of the organ-
ism observed during the experiment with SeO 
NPs were non-monotonic, which was not sur-
prising given the multicomponent nature of 
the biological system. When examining the 
charts of the proportion of degenerated hepa-
tocytes and ALT activity, we noted a relation-
ship between the increase in the SeO NP con-
centration and changes in the concentration of 
ALT and the above cell count. An insignifi-
cant decrease in the proportion of degenerated 
hepatocytes at low concentrations of the irri-
tant led to a sharp increase in blood  
ALT concentrations. The observed non-
monotonicity of both functions was associ-
ated with the damaging effect of SeO NPs on 
liver cells and the release of ALT, the marker 
for cytolysis. At the lowest dose of SeO NPs, 
however, a sharp increase in ALT activity 
was accompanied by an insignificant increase 
in the proportion of degenerated hepatocytes, 
whereas the dependencies of these indicators 
uniformly decreased at the moderate and high 
doses (p < 0.05). The sharp increase in ALT 
activity becomes clear when comparing the 
graphs of changes in the proportion of neu-
trophils and EL1, Kupffer cells in liver smears 
and ALT (Figures 4–7). The contribution of 
these cells, or rather their destruction [20] due 
to the toxic effect of SeO NPs, increased the 
concentration of the cytosolic enzyme ALT at 
the low NP dose of 3.6 mg/kg b.w.  

The toxic effect of SeO NPs on biliary 
epithelial cells was associated with a dose-
dependent decrease in the concentration of al-
kaline phosphatase in the blood serum in all 
groups exposed to SeO NPs. 

Despite the fact that destroyed epithelial 
cells of the biliary tract, intestine, brush bor-
der of the kidneys, and bone tissue contribute 
the most to the increase in ALP blood levels, 
it is important to highlight the role of myeloid 
cells, including neutrophils and EL, in 
amending blood ALP concentrations. The en-

try of ALP into the blood accompanying the 
destruction of biliary epithelial cells can be 
enhanced by the destruction of neutrophils 
and EL, which is manifested upon exposure to 
SeO NPs at 3.6 mg/kg b.w. (see Figures 5–6). 
The most pronounced decrease in ALP activ-
ity was observed at the highest tested SeO NP 
dose of 36 mg/kg b.w. (p < 0.05) (Figure 8). 
It is likely that the dose-dependent decrease 
in ALP activity with an increase in SeO NP 
exposure is associated with a deficiency in 
zinc and magnesium, which are part of the 
enzyme, but data on competitive interactions 
between magnesium/zinc and selenium are 
lacking. 

Changes in the structure of liver cell mi-
tochondria, an imbalance of blood enzymes 
and the cellular composition of the liver may 
indicate liver damage and dysfunction induced 
by SeO NP exposure. Mathematical modeling 
can be used to assess the dose-dependent gen-
eral toxic effect at the level of cells, tissues, 
and organs and to analyze health risks. 

Conclusions: 
1.  We revealed atypical dose-response 

relationships between SeO NP exposures and 
hepatic changes. They were nonlinear and de-
scribed by non-monotonic functions for such 
parameters as the proportion of eosinophilic 
leukocytes, neutrophils, Kupffer cells, degen-
erated hepatocytes, and the activity of ALT 
and ALP enzymes. 

2. The effectiveness of using mathemati-
cal models built on a linear combination of 
Chebyshev polynomials, the Michaelis–
Menten equation, modified Hill functions, and 
the Johnson–Lovett model for describing dose-
dependent adverse effects of SeO NP exposure 
was proven. 

3.  The highest health risks were posed by 
low (3.6 mg/kg b.w.) and moderate (18 mg/kg 
b.w.) doses of SeO NPs, as shown by changes 
in ALT and ALP activity and the percentage of 
degenerated hepatocytes and Kupffer cells. 

__________________________ 
 

1 Kishkun A.A., Beganskaya L.A. Klinicheskaya laboratornaya diagnostika [Clinical Laboratory Diagnostics]: A Manual 
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4. The effect of SeO NP exposure dose of 
36 mg/kg b.w. on the percentage of degener-
ated hepatocytes and neutrophils in the liver 
was most pronounced. 

When developing chemical safety stan-
dards and assessing health risks, it is therefore 
necessary to consider that, in case of sub-
chronic exposure, the highest number of pro-

nounced toxic effects and the risk of patho-
logical disorders are observed at low and me-
dium doses of SeO NPs tested. 
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