Aerogenic pollutants as risk factors causing development of cardio-metabolic pathology (Review)

View or download the full article: 
614.7 - 616.1

A.E. Nosov1, A.S. Baydina1, O.Yu. Ustinova1,2


1Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, 82 Monastyrskaya Str., Perm, 614045, Russian Federation
2Perm State National Research University, 15 Bukireva Str., Perm, 614990, Russian Federation


Ambient air pollution causes approximately 3.3 million untimely deaths annually (2.1 deaths due to ischemic heart disease and 1.1 million deaths due to stroke). Mortality caused by ambient air pollution is higher than mortality due to such traditional risk factors as smoking, obesity, and elevated dextrose contents in blood. Relative risk of mortality amounts to 1.26 (95 % CI 1.08–1.47) in cities with the highest air pollution against those where air pollution is the lowest. Occupational exposure to various chemical air pollutants can cause more than 1 million untimely deaths all over the world but its contribution to prevalence of cardiovascular diseases has not been determined sufficiently. Aerogenic pollutants are quite variable in their chemical structure and include both particulate matter (PM for short) and gaseous matter. The American Heart Association and the European Society of Cardiology consider PM2.5 to be a risk factor causing cardiovascular diseases. This analytical review presents data on effects produced by aerogenic pollutants on development of cardio-metabolic pathology and population mortality due to vascular and metabolic diseases (arterial hypertension, atherosclerosis and ischemic heart disease, heart rhythm disturbances, and type 2 diabetes mellitus). There are also data on mechanisms of pathogenetic influence exerted by aerogenic pollutants on development of such diseases including generation of anti-inflammatory and oxidative mediators and their release into blood flow; developing imbalance in the autonomic nervous system with prevailing activity of the sympathetic nervous system and disrupted heart rate variability; direct introduction of aerogenic pollutants from the lungs into blood flow with developing direct toxic effects. We have also analyzed literature data on protective effects produced by reduction in ambient air pollution on prevalence of cardiovascular pathology.

aerogenic pollutants, airborne particulate matter, persistent organic pollutants, cardiovascular pathology
Nosov A.E., Baydina A.S., Ustinova O.Yu. Aerogenic pollutants as risk factors causing development of cardio-metabolic pathology (review). Health Risk Analysis, 2021, no. 4, pp. 178–190. DOI: 10.21668/health.risk/2021.4.20.eng
  1. Hadley M.B., Baumgartner J., Vedanthan R. Developing a Clinical Approach to Mitigating Risks of Air Pollution and Protecting Cardiovascular Health Circulation, 2018, vol. 137, no. 7, pp. 725–742. DOI: 10.1161/CIRCULATIONAHA.117.030377
  2. GBD 2016 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet, 2017, vol. 390, no. 10100, pp. 1345–1422. DOI: 10.1016/S0140-6736 (17) 32366-8
  3. Cohen A.J., Brauer M., Burnet R., Anderson H.R., Frostad J., Estep К., Balakrishnan K., Brunekreef B. [et al.]. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet, 2017, vol. 389, no. 10082, pp. 1907–1918. DOI: 10.1016/S0140-6736 (17) 30505-6
  4. Zipes D.P., Libby P., Bonow R.O., Mann D.L., Tomaselli G.F. Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine 11th Edition. Elsevier, 2018, 2040 р.
  5. Cullen M.R. Invited commentary: the search for preventable causes of cardiovascular disease – whither work? Am. J. Epidemiol., 2009, vol. 169, no. 12, pp. 1422–1425. DOI: 10.1093/aje/kwp078
  6. Fang S.C., Cassidy А., Christiani D.C. A systematic review of occupational exposure to particulate matter and cardiovascular disease. Int. J. Environ. Res. Public Health, 2010, vol. 7, no. 4, pp. 1773–1806. DOI: 10.3390/ijerph7041773
  7. Secrest M.H., Schauer J.J., Carter E.M., Baumgartner J. Particulate matter chemical component concentrations and sources in settings of household solid fuel use. Indoor Air, 2017, vol. 27, no. 6, pp. 1052–1066. DOI: 10.1111/ina.12389
  8. Newby D.E., Mannucci P.M., Tell G.S., Baccarelli А.А., Brook R.D., Donaldson К., Forastiere F., Franchini M. [et al.]. Expert position paper on air pollution and cardiovascular disease. Eur. Heart J., 2015, vol. 36, no. 2, pp. 83–93b. DOI: 10.1093/eurheartj/ehu458
  9. Brook R.D., Rajagopalan S., Pope C.A. 3rd, Brook J.R., Bhatnagar A., Diez-Roux A.V., Holguin F., Hong Y. [et al.]. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation, 2010, vol. 121, no. 21, pp. 2331–2378. DOI: 10.1161/CIR.0b013e3181dbece1
  10. Munzel T., Sorensen M., Gori T., Schmidt F.P., Rao X., Brook J., Chen L.C., Brook R.D., Rajagopalan S. Environmental stressors and cardio-metabolic disease: part I – epidemiologic evidence supporting a role for noise and air pollution and effects of mitigation strategies. Eur. Heart J., 2017, vol. 38, no. 8, pp. 550–556. DOI: 10.1093/eurheartj/ehw269
  11. Munzel T., Sorensen M., Gori T., Schmidt F.P., Rao X., Brook J., Chen L.C., Brook R.D., Rajagopalan S. Environmental stressors and cardio-metabolic disease: part II – mechanistic insights. Eur. Heart J., 2017, vol. 38, no. 8, pp. 557–564. DOI: 10.1093/eurheartj/ehw294
  12. Cesaroni G., Forastiere F., Stafoggia M., Andersen Z.J., Badaloni C., Beelen R., Caracciolo B., de Faire U. [et al.]. Long-term exposure to ambient air pollution and incidence of acute coronary events: prospective cohort study and meta-analysis in 11 European cohorts from the ESCAPE. Project. Br. Med. J., 2014, vol. 348, pp. f7412. DOI: 10.1136/bmj.f7412
  13. Chen R., Kan H., Chen B., Huang W., Bai Z., Song G., Pan G., CAPES Collaborative Group. Association of particulate air pollution with daily mortality: the China Air Pollution and Health Effects Study. Am. J. Epidemiol., 2012, vol. 175, no. 11, pp. 1173–1181. DOI: 10.1093/aje/kwr425
  14. Mustafic H., Jabre P., Caussin C., Murad M.H., Escolano S., Tafflet M., Perier M.C., Marijon E. [et al.]. Main air pollutants and myocardial infarction: a systematic review and meta-analysis. J. Am. Med. Assoc., 2012, vol. 307, no. 7, pp. 713–721. DOI: 10.1001/jama.2012.126
  15. Yang W.S., Wang X., Deng Q., Fan W.Y., Wang W.Y. An evidence-based appraisal of global association between air pollution and risk of stroke. Int. J. Cardiol., 2014, vol. 175, no. 2, pp. 307–313. DOI: 10.1016/j.ijcard.2014.05.044
  16. Stafoggia M., Cesaroni G., Peters A., Andersen Z.J., Badaloni C., Beelen R., Caracciolo B., Cyrys J. [et al.]. Long-term exposure to ambient air pollution and incidence of cerebrovascular events: results from eleven European cohorts within the ESCAPE project. Environ. Health Perspect., 2014, vol. 122, no. 9, pp. 919–925. DOI: 10.1289/ehp.1307301
  17. Miller K.A., Siscovick D.S., Sheppard L., Shepherd K., Sullivan J.H., Anderson G.L., Kaufman J.D. Long-term exposure to air pollution and incidence of cardiovascular events in women. N. Engl. J. Med., 2007, vol. 356, no. 5, pp. 447–458. DOI: 10.1056/NEJMoa054409
  18. Zhang P., Dong G., Sun B., Zhang L., Chen X., Ma N., Yu F., Guo H. Long-term exposure to ambient air pollution and mortality due to cardiovascular disease and cerebrovascular disease in Shenyang, China. PLoS One, 2011, vol. 6, no. 6, pp. e20827. DOI: 10.1371/journal.pone.0020827
  19. Hong Y.C., Lee J.T., Kim H., Ha E.H., Schwartz J., Christiani D.C. Effects of air pollutants on acute stroke mortality. Environ. Health Perspect., 2002, vol. 110, no. 2, pp. 187–191. DOI: 10.1289/ehp.02110187
  20. Shah A.S.V., Langrish J.P., Nair H., McAllister D.A., Hunter A.L., Donaldson K., Newby D.E., Mills N.L. Global association of air pollution and heart failure: a systematic review and meta-analysis. Lancet, 2013, vol. 382, no. 9897, pp. 1039–1048. DOI: 10.1016/S0140-6736 (13)60898-3
  21. Atkinson R.W., Carey I.M., Kent A.J., van Staa T.P., Anderson H.R., Cook D.G. Long-term exposure to outdoor air pollution and incidence of cardiovascular diseases. Epidemiology, 2013, vol. 24, no. 1, pp. 44–53. DOI: 10.1097/EDE.0b013e318276ccb8
  22. Kelly F., Fussel J.C. Role of oxidative stress in cardiovascular disease outcomes following exposure to ambient air pollution. Free Radic. Biol. Med., 2017, vol. 110, pp. 345–367. DOI: 10.1016/j.freeradbiomed.2017.06.019
  23. Cosselman K.E., Navas-Acien A., Kaufman J.D. Environmental factors in cardiovascular disease. Nat. Rev. Cardiol., 2015, vol. 12, no. 11, pp. 627–642. DOI: 10.1038/nrcardio.2015.152
  24. Falcon-Rodriguez C.I., Osornio-Vargas A.R., Sada-Ovalle I., Segura-Medina P. Aeroparticles, composition, and lung diseases. Front. Immunol., 2016, vol. 7, pp. 3. DOI: 10.3389/fimmu.2016.00003
  25. Franklin B.A., Brook R., Pope C.A. 3rd. Air pollution and cardiovascular disease. Curr. Probl. Cardiol., 2015, vol. 40, no. 5, pp. 207–238. DOI: 10.1016/j.cpcardiol.2015.01.003
  26. Langrish J.P., Unosson J., Bosson J., Barath S., Muala A., Blackwell S., Söderberg S., Pourazar J. [et al.]. Altered nitric oxide bioavailability contributes to diesel exhaust inhalation-induced cardiovascular dysfunction in man. J. Am. Heart Assoc., 2013, vol. 2, no. 1, pp. e004309. DOI: 10.1161/JAHA.112.004309
  27. Gandhi S.K., Rich D.Q., Ohman-Strickland P.A., Kipen H.M., Gow M. Plasma nitrite is an indicator of acute changes in ambient air pollutant concentrations. Inhal. Toxicol., 2014, vol. 26, no. 7, pp. 426–434. DOI: 10.3109/08958378.2014.913216
  28. Rückerl R., Hampel R., Breitner S., Cyrys J., Kraus U., Carter J., Dailey L., Devlin R.B. [et al.]. Associations between ambient air pollution and blood markers of inflammation and coagulation/fibrinolysis in susceptible populations. Environment international, 2014, vol. 70, pp. 32–49. DOI: 10.1016/j.envint.2014.05.013
  29. Gold D.R., Mittleman M.A. New insights into pollution and the cardiovascular system 2010 to 2012. Circulation, 2013, vol. 127, no. 18, pp. 1903–1913. DOI: 10.1161/CIRCULATIONAHA.111.064337
  30. Sanidas E.J., Papadopoulos P.D., Grassos H., Velliou R., Tsioufis M., Barbetseas J., Papademetriou V. Air pollution and arterial hypertension. A new risk factor is in the air. J. Am. Soc. Hypertens., 2017, vol. 11, no. 11, pp. 709–715. DOI: 10.1016/j.jash.2017.09.008
  31. Lewington S., Clarke R., Qizilbash N., Peto R., Collins R., Prospective Studies Collaboration. Age-specific relevance of usual blood pressure to vascular mortality: A meta-analysis of individual data for one million adults in 61 prospective studies. Lancet, 2002, vol. 360, no. 9349, pp. 1903–1913. DOI: 10.1016/s0140-6736 (02) 11911-8
  32. Whelton P.K., He J., Appel L.J., Cutler J.A., Havas S., Kotchen T.A., Roccella E.J., Stout R. [et al.]. Primary prevention of hypertension: Clinical and public health advisory from The National High Blood Pressure Education Program. Journal of the American Medical Association, 2002, vol. 288, no. 15, pp. 1882–1888. DOI: 10.1001/jama.288.15.1882
  33. Yang B.Y., Qian Z., Howard S.W., Vaughn M.G., Fan S.J., Liu K.K., Dong G.H. Global association between ambient air pollution and blood pressure: A systematic review and meta-analysis. Environ. Pollut., 2018, vol. 235, pp. 576–588. DOI: 10.1016/j.envpol.2018.01.001
  34. Lind L., Lind P.M. Can persistent organic pollutants and plastic-associated chemicals cause cardiovascular disease? Journal of internal medicine, 2012, vol. 271, no. 6, pp. 537–553. DOI: 10.1111/j.1365-2796.2012.02536.x
  35. Giorgini P., Di Giosia P., Grassi D., Rubenire M., Brook R.D., Ferri C. Air pollution exposure and blood pressure: an updated review of the literature. Curr. Pharm. Des., 2015, vol. 22, no. 1, pp. 28–51. DOI: 10.2174/1381612822666151109111712
  36. Hypertension: a companion to Braunwald's Heart Disease. 3rd edition. In: G.L. Bakris, M.J. Sorrentino eds. Elsevier, 2017, 520 р.
  37. Liang R., Zhang B., Zhao X., Ruan Y., Lian H., Fan Z. Effect of exposure to PM2.5 on blood pressure: a systematic review and meta-analysis. J. Hypertens., 2014, vol. 32, no. 11, pp. 2130–2140. DOI: 10.1097/HJH.0000000000000342
  38. Giorgini P., Rubenire M., Das R., Gracik T., Wang L., Morishita M., Bard R.L., Jackson E.A. [et al.]. Particulate matter air pollution and ambient temperature: opposing effects on blood pressure in high-risk cardiac patients. J. Hypertens., 2015, vol. 33, no. 10, pp. 2032–2038. DOI: 10.1097/HJH.0000000000000663
  39. Brook R.D., Sun Z., Brook J.R., Zhao X., Ruan Y., Yan J., Mukherjee B., Rao X. [et al.]. Extreme air pollution conditions adversely affect blood pressure and insulin resistance: the air pollution and cardiometabolic disease study. Hypertension, 2016, vol. 67, no. 1, pp. 77–85. DOI: 10.1161/HYPERTENSIONAHA.115.06237
  40. Chen H., Burnett R.T., Kwong J.C., Villeneuve P.J., Goldberg M.S., Brook R.D., van Donkelaar A., Jerrett M. [et al.]. Spatial association between ambient fine particulate matter and incident hypertension. Circulation, 2014, vol. 129, no. 5, pp. 562–569. DOI: 10.1161/CIRCULATIONAHA.113.003532
  41. Brook R.D., Kousha T. Air pollution and emergency department visits for hypertension in Edmonton and Calgary, Canada: a case-crossover study. Am. J. Hypertens., 2015, vol. 28, no. 9, pp. 1121–1126. DOI: 10.1093/ajh/hpu302
  42. Pope C.A. 3rd., Turner M.C., Burnett R.T., Jerrett M., Gapstur S.M., Diver W.R., Krewski D., Brook R.D. Relationships between fine particulate air pollution, cardiometabolic disorders, and cardiovascular mortality. Circ. Res., 2015, vol. 116, no. 1, pp. 108–115. DOI: 10.1161/CIRCRESAHA.116.305060
  43. Adar S.D., Klein R., Klein B.E., Szpiro A.A., Cotch M.F., Wong T.Y., O'Neill M.S., Shrager S. [et al.]. Air pollution and the microvasculature: a cross-sectional assessment of in vivo retinal images in the population-based multi-ethnic study of atherosclerosis (MESA). PLoS Med., 2010, vol. 7, no. 11, pp. e1000372. DOI: 10.1371/journal.pmed.1000372
  44. Louwies T., Panis L.I., Kicinski M., De Boever P., Nawrot T.S. Retinal microvascular responses to short-term changes in particulate air pollution in healthy adults. Environ. Health Perspect., 2013, vol. 121, no. 9, pp. 1011–1016. DOI: 10.1289/ehp.1205721
  45. Wilker E.H., Ljungman P.L., Rice M.B., Kloog I., Schwartz J., Gold D.R., Koutrakis P., Vita J.A. [et al.]. Relation of long-term exposure to air pollution to brachial artery flow-mediated dilation and reactive hyperemia. Am. J. Cardiol., 2014, vol. 113, no. 12, pp. 2057–2063. DOI: 10.1016/j.amjcard.2014.03.048
  46. Krishnan R.M., Adar S.D., Szpiro A.A., Jorgensen N.W., Van Hee V.C., Barr R.G., O'Neill M.S., Herrington D.M. [et al.]. Vascular responses to long- and short-term exposure to fine particulate matter: MESA Air (Multi-Ethnic Study of Atherosclerosisi and Air Pollution). J. Am. Coll. Cardiol., 2012, vol. 60, no. 21, pp. 2158–2166. DOI: 10.1016/j.jacc.2012.08.973
  47. Zanobetti A., Stone P.H., Speizer F.E., Schwartz J.D., Coull B.A., Suh H.H., Nearing B.D., Mittleman M.A. [et al.]. T-wave alternans, air pollution and traffic in high-risk subjects. Am. J. Cardiol., 2009, vol. 104, no. 5, pp. 665–670. DOI: 10.1016/j.amjcard.2009.04.046
  48. Cakmak S., Dales R., Kauri L.M., Mahmud M., Van Ryswyk K., Vanos J., Liu L., Kumarathasan P. [et al.]. Metal composition of fine particulate air pollution and acute changes in cardiorespiratory physiology. Environ. Pollut., 2014, vol. 189, pp. 208–214. DOI: 10.1016/j.envpol.2014.03.004
  49. Lee M.-S., Eum K.-D., Fang S.C., Rodrigues E.G., Modest G.A., Christiani D.C. Oxidative stress and systemic inflammation as modifiers of cardiac autonomic responses to particulate air pollution. Int. J. Cardiol., 2014, vol. 176, no. 1, pp. 166–170. DOI: 10.1016/j.ijcard.2014.07.012
  50. Park S.K., Auchincloss A.H., O'Neill M.S., Prineas R., Correa J.C., Keeler J., Barr R.G., Kaufman J.D., Diez Roux A.V. Particulate air pollution, metabolic syndrome, and heart rate variability: the multi-ethnic study of atherosclerosis (MESA). Environ. Health Perspect., 2010, vol. 118, no. 10, pp. 1406–1411. DOI: 10.1289/ehp.0901778
  51. Anderson H.R., Armstrong B., Hajat S., Harrison R., Monk V., Poloniecki J., Timmis A., Wilkinson P. Air pollution and activation of implantable cardioverter defibrillators in London. Epidemiology, 2010, vol. 21, no. 3, pp. 405–413. DOI: 10.1097/EDE.0b013e3181d61600
  52. Langrish J.P., Watts S.J., Hunter A.J., Shah A.S.V., Bosson J.A., Unosson J., Barath S., Lundbäck M. [et al.]. Controlled exposures to air pollutants and risk of cardiac arrhythmia. Environ. Health Perspect., 2014, vol. 122, no. 7, pp. 747–753. DOI: 10.1289/ehp.1307337
  53. Pieters N., Plusquin M., Cox B., Kicinski M., Vanronsveld J., Nawrot T.S. An epidemiological appraisal of the association between heart rate variability and particulate air pollution: a meta-analysis. Heart, 2012, vol. 98, no. 15, pp. 1127–1135. DOI: 10.1136/heartjnl-2011-301505
  54. Liao D., Shaffer M.L., Rodriguez-Colon S., He F., Li X., Wolbrette D.L., Yanosky J., Cascio W.E. Acute adverse effects of fine particulate air pollution on ventricular repolarization. Environ. Health Perspect., 2010, vol. 118, no. 7, pp. 1010–1015. DOI: 10.1289/ehp.0901648
  55. Sivagangabalan G., Spears D., Masse S., Urch B., Brook R.D., Silverman F., Gold D.R., Lukic K.Z. [et al.]. The effect of air pollution on spatial dispersion of myocardial repolarization in healthy human volunteers. J. Am. Coll. Cardiol., 2011, vol. 57, no. 2, pp. 198–206. DOI: 10.1016/j.jacc.2010.08.625
  56. Barbosa C.M., Terra-Filho M., de Albuquerque A.L., Di Giorgi D., Grupi C., Negrão C.E., Pinto Brandão Rondon M.U., Martinez D.G. [et al.]. Burnt sugarcane harvesting – cardiovascular effects on a group of healthy workers, Brazil. PLoS One, 2012, vol. 7, no. 9, pp. e46142. DOI: 10.1371/journal.pone.0046142
  57. Wilker E.H., Mittleman M.A., Coull B.A., Gryparis A., Bots M.L., Schwartz J., Sparrow D. Long-term exposure to black carbon and carotid intima-media thickness: the normative aging study. Environ. Health Perspect., 2013, vol. 121, no. 9, pp. 1061–1067. DOI: 10.1289/ehp.1104845
  58. Adar S.D., Sheppard L., Vedal S., Polak J.F., Sampson P.D., Diez Roux A.V., Budoff M.M., Jacobs D.R. Jr. [et al.]. Fine particulate air pollution and the progression of carotid intima-medial thickness: a prospective cohort study from the multi-ethnic study of atherosclerosis and air pollution. PLoS Med., 2013, vol. 10, no. 4, pp. e1001430. DOI: 10.1371/journal.pmed.1001430
  59. Kunzli N., Jerrett M., Mack W.J., Beckerman B., La Bree L., Gilliland F., Thomas D., Peters J., Hodis H.N. Ambient air pollution and atherosclerosis in Los Angeles. Environ. Health Perspect., 2005, vol. 113, no. 2, pp. 201–206. DOI: 10.1289/ehp.7523
  60. Bauer M., Moebus S., Mohlenkamp S., Dragano N., Nonnemacher M., Fuchsluger M., Kessler C., Jakobs H. [et al.]. Urban particulate matter air pollution is associated with subclinical atherosclerosis: results from the HNR (Heinz Nixdorf Recall) study. J. Am. Coll. Cardiol., 2010, vol. 56, no. 22, pp. 1803–1808. DOI: 10.1016/j.jacc.2010.04.065
  61. Rajagopalan S., Brook R.D. Air pollution and type 2 diabetes: mechanistic insights. Diabetes, 2012, vol. 61, no. 12, pp. 3037–3045. DOI: 10.2337/db12-0190
  62. Brook R.D., Newby D.E., Rajagopalan S. Pollution and Cardiometabolic Disease: An Update and Call for Clinical Trials. Am. J. Hypertens., 2017, vol. 31, no. 1, pp. 1–10. DOI: 10.1093/ajh/hpx109
  63. Chen H., Burnett R.T., Kwong J.C., Villeneuve P.J., Goldberg M.S., Brook R.D., van Donkelaar A., Jerrett M. [et al.]. Risk of incident diabetes in relation to long-term exposure to fine particulate matter in Ontario, Canada. Environ. Health Perspect., 2013, vol. 121, no. 7, pp. 804–810. DOI: 10.1289/ehp.1205958
  64. Liu C., Yang C., Zhao Y., Ma Z., Bi J., Liu Y., Meng X., Wan Y. [et al.]. Associations between long-term exposure to ambient particulate air pollution and type 2 diabetes prevalence, blood glucose and glycosylated hemoglobin levels in China. Environ. Int., 2016, vol. 92–93, pp. 416–421. DOI: 10.1016/j.envint.2016.03.028
  65. Brook R.D., Xu X., Bard L.R., Dvonch J.T., Morishita M., Kaciroti N., Sun Q., Harkema J., Rajagopalan S. Reduced metabolic insulin sensitivity following sub-acute exposures to low levels of ambient fine particulate matter air pollution. Sci. Total Environ., 2013, vol. 448, pp. 66–71. DOI: 10.1016/j.scitotenv.2012.07.034
  66. Liang F., Yang X., Liu F., Li J., Xiao Q., Chen J., Liu X., Cao J. [et al.]. Long-term exposure to ambient fine particulate matter and incidence of diabetes in China: A cohort study. Environment International, 2019, vol. 126, pp. 568–575. DOI: 10.1016/j.envint.2019.02.069
  67. Lao X.Q., Guo Q., Chang L., Bo Y., Zhang Z., Chuang Y.C., Jiang W.K., Lin C. [et al.]. Long-term exposure to ambient fine particulate matter (PM2.5) and incident type 2 diabetes: a longitudinal cohort study. Diabetologia, 2019, vol. 62, no. 5, pp. 759–769. DOI: 10.1007/s00125-019-4825-1
  68. Eze I.C., Hemkens L.G., Bucher H.C., Hofmann B., Schindler C., Kunzli N., Schikowski T., Probst-Hensch N.M. Association between ambient air pollution and diabetes mellitus in Europe and North America: systematic review and meta-analysis. Environ. Health Perspect., 2015, vol. 123, no. 5, pp. 381–389. DOI: 10.1289/ehp.1307823
  69. Rao X., Montresor-Lopez J., Puett R., Rajagopalan S., Brook R.D. Ambient air pollution: an emerging risk factor for diabetes mellitus. Curr. Diab. Rep., 2015, vol. 15, no. 6, pp. 603. DOI: 10.1007/s11892-015-0603-8
  70. Shoelson S.E., Lee J., Goldfine A.B. Inflammation and insulin resistance. J. Clin. Invest., 2006, vol. 116, no. 7, pp. 1793–1801. DOI: 10.1172/JCI29069
  71. Sun Q., Yue P., Deiuliis J.A., Lumeng C.N., Kampfrath T., Mikolaj M.B., Cai Y., Ostrowski M.C. [et al.]. Ambient air pollution exaggerates adipose inflammation and insulin resistance in a mouse model of diet-induced obesity. Circulation, 2009, vol. 119, no. 4, pp. 538–546. DOI: 10.1161/CIRCULATIONAHA.108.799015
  72. Simon S.A., Liedtke W. How irritating: the role of TRPA1 in sensing cigarette smoke and aerogenic oxidants in the airways. J. Clin. Invest., 2008, vol. 118, no. 7, pp. 2383–2386. DOI: 10.1172/JCI36111
  73. Baron A.D., Steinber H.O., Chaker H., Leaming R., Johnson A., Brechtel G. Insulin-mediated skeletal muscle vasodilation contributes to both insulin sensitiity and responsiveness in lean humans. J. Clin. Invest., 1995, vol. 96, no. 2, pp. 786–792. DOI: 10.1172/JCI118124
  74. Shi H., Kokoeva M.V., Inouye K., Tzameli I., Yin H., Flier J.S. TLR4 links innate immunity and fatty acid-induced insulin resistance. J. Clin. Invest., 2006, vol. 116, no. 11, pp. 3015–3025. DOI: 10.1172/JCI28898
  75. Vandanmagsar B., Youm Y.H., Ravussin A., Galgani J.E., Stadler K., Mynatt R.L., Ravussin E., Stephens J.M., Dixit V.D. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat. Мed., 2011, vol. 17, no. 2, pp. 179–188. DOI: 10.1038/nm.2279
  76. Imai Y., Kuba K., Neely G.G., Yaghubian-Malhami R., Perkmann T., van Loo G., Ermolaeva M., Veldhuizen R. [et al.]. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell, 2008, vol. 133, no. 2, pp. 235–249. DOI: 10.1016/j.cell.2008.02.043
  77. Kampfrath T., Maiseyeu A., Ying Z., Shah Z., Deiuliis J.A., Xu X., Kherada N., Brook R.D. [et al.]. Chronic fine particulate matter exposure induces systemic vascular dysfunction via NADPH oxidase and TLR4 pathways. Circ. Res., 2011, vol. 108, no. 6, pp. 716–726. DOI: 10.1161/CIRCRESAHA.110.237560
  78. Deiuliis J.A., Kampfrath T., Zhong J., Oghumu S., Maiseyeu A., Chen L.C., Sun Q., Satoskar A.R., Rajagopalan S. Pulmonary T cell activation in response to chronic particulate air pollution. Am. J. Physiol. Lung Cell Mol. Physiol., 2012, vol. 302, no. 4, pp. L399–409. DOI: 10.1152/ajplung.00261.2011
  79. Dominici F., Peng R.D., Ebisu K., Zeger S.L., Samet J.M., Bell M.L. Does the effect of PM10 on mortality depend on PM nickel and vanadium content? A reanalysis of the NMMAPS data. Environ. Health Perspect., 2007, vol. 115, no. 12, pp. 1701–1703. DOI: 10.1289/ehp.10737
  80. Shertzer H.G., Nebert D.W., Puga A., Ary M., Sonntag D., Dixon K., Robinson L.J., Cianciolo E., Dalton T.P. Dioxin causes a sustained oxidative stress response in the mouse. Biochem. Biophys. Res. Commun., 1998, vol. 253, no. 1, pp. 44–48. DOI: 10.1006/bbrc.1998.9753
  81. Nebert D.W., Roe A.L., Dieter M.Z., Solis W.A., Yang Y., Dalton T.P. Role of the aromatic hydrocarbon receptor and [Ah] gene battery in the oxidative stress response, cell cycle control, and apoptosis. Biochem. Pharmacol., 2000, vol. 59, no. 1, pp. 65–85. DOI: 10.1016/s0006-2952 (99) 00310-x
  82. Desvergne B., Feige J.N., Casals-Casas C. PPAR-mediated activity of phthalates: a link to the obesity epidemic? Mol. Cell Endocrinol., 2009, vol. 304, no. 1–2, pp. 43–48. DOI: 10.1016/j.mce.2009.02.017
  83. Wang S.L., Tsai P.C., Yang C.Y., Guo Y.L. Increased risk of diabetes and polychlorinated biphenyls and dioxins: a 24-year follow-up study of the Yucheng cohort. Diabetes Care, 2008, vol. 31, no. 8, pp. 1574–1579. DOI: 10.2337/dc07-2449
  84. Sergeev A.V., Carpenter D.O. Hospitalization rates for coronary heart disease in relation to residence near areas contaminated with persistent organic pollutants and other pollutants. Environ. Health Perspect., 2005, vol. 113, no. 6, pp. 756–761. DOI: 10.1289/ehp.7595
  85. Everett C.J., Frithsen I.L., Diaz V.A., Koopman R.J., Simpson W.M. Jr., Mainous A.G. 3rd. Association of a polychlorinated dibenzo-p-dioxin, a polychlorinated biphenyl, and DDT with diabetes in the 1999–2002 National Health and Nutrition Examination Survey. Environ. Res., 2007, vol. 103, no. 3, pp. 413–418. DOI: 10.1016/j.envres.2006.11.002
  86. Ha M.H., Lee D.H., Son H.K., Park S.K., Jacobs D.R. Jr. Association between serum concentrations of persistent organic pollutants and prevalence of newly diagnosed hypertension: results from the National Health and Nutrition Examination Survey 1999–2002. J. Hum. Hypertens., 2009, vol. 23, no. 4, pp. 274–286. DOI: 10.1038/jhh.2008.124
  87. Uemura H., Arisawa K., Hiyoshi M., Kitayama A., Takami H., Sawachika F., Dakeshita S., Nii K. [et al.]. Prevalence of metabolic syndrome associated with body burden levels of dioxin and related compounds among Japan’s general population. Environ. Health Perspect., 2009, vol. 117, no. 4, pp. 568–573. DOI: 10.1289/ehp.0800012
  88. Lee D.H., Lee I.K., Porta M., Steffes M., Jacobs D.R. Jr. Relationship between serum concentrations of persistent organic pollutants and the prevalence of metabolic syndrome among non-diabetic adults: results from the National Health and Nutrition Examination Survey 1999–2002. Diabetologia, 2007, vol. 50, no. 9, pp. 1841–1851. DOI: 10.1007/s00125-007-0755-4
  89. Park S.K., Son H.K., Lee S.K., Kang J.H., Chang Y.S., Jacobs D.R., Lee D.H. Relationship between serum concentrations of organochlorine pesticides and metabolic syndrome among non-diabetic adults. J. Prev. Med. Public Health, 2010, vol. 43, no. 1, pp. 1–8. DOI: 10.3961/jpmph.2010.43.1.1
  90. Lee D.H., Lee I.K., Jin S.H., Steffes M., Jacobs D.R. Jr. Association between serum concentrations of persistent organic pollutants and insulin resistance among non-diabetic adults: results from the National Health and Nutrition Examination Survey 1999–2002. Diabetes Care, 2007, vol. 30, no. 3, pp. 622–628. DOI: 10.2337/dc06-2190
  91. Ronn M., Lind L., van Bavel B., Salihovic S., Michaelsson K., Lind P.M. Circulating levels of persistent organic pollutants associate in divergent ways to fat mass measured by DXA in humans. Chemosphere, 2011, vol. 85, no. 3, pp. 335–343. DOI: 10.1016/j.chemosphere.2011.06.095
  92. Wolff M.S., Anderson H.A., Britton J.A., Rothman N. Pharmacokinetic variability and modern epidemiology – the example of dichlorodiphenyltrichloroethane, body mass index, and birth cohort. Cancer Epidemiol. Biomarkers Prev., 2007, vol. 16, no. 10, pp. 1925–1930. DOI: 10.1158/1055-9965.EPI-07-0394
  93. Elobeid M.A., Padilla M.A., Brock D.W., Ruden D.M., Allison D.B. Endocrine disruptors and obesity: an examination of selected persistent organic pollutants in the NHANES 1999–2002 data. Int. J. Environ. Res. Public Health, 2010, vol. 7, no. 7, pp. 2988–3005. DOI: 10.3390/ijerph7072988
  94. Lee D.H., Steffes M.W., Sjodin A., Jones R.S., Needham L.L., Jacobs D.R. Jr. Low dose of some persistent organic pollutants predicts type 2 diabetes: a nested case-control study. Environ. Health Perspect., 2010, vol. 118, no. 9, pp. 1235–1242. DOI: 10.1289/ehp.0901480
  95. Vasiliu O., Cameron L., Gardiner J., Deguire P., Karmaus W. Polybrominated biphenyls, polychlorinated biphenyls, body weight, and incidence of adult-onset diabetes mellitus. Epidemiology, 2006, vol. 17, no. 4, pp. 352–359. DOI: 10.1097/01.ede.0000220553.84350.c5
  96. Lind P.M., Lind L. Circulating levels of bisphenol A and phthalates are related to carotid atherosclerosis in the elderly. Atherosclerosis, 2011, vol. 218, no. 1, pp. 207–213. DOI: 10.1016/j.atherosclerosis.2011.05.001
  97. Vena J., Boffetta P., Becher H., Benn T., Bueno-de-Mesquita H.B., Coggon D., Colin D., Flesch-Janys D. [et al.]. Exposure to dioxin and nonneoplastic mortality in the expanded IARC international cohort study of phenoxyherbicide and chlorophenol production workers and sprayers. Environ. Health Perspect., 1998, vol. 106, suppl. 2, pp. 645–653. DOI: 10.1289/ehp.98106645
  98. Shcherbatykh I., Huang X., Lessner L., Carpenter D.O. Hazardous waste sites and stroke in New York State. Environ. Health, 2005, vol. 4, pp. 18. DOI: 10.1186/1476-069X-4-18
  99. Melzer D., Rice N.E., Lewis C., Henley W.E., Galloway T.S. Association of urinary bisphenol a concentration with heart disease: evidence from NHANES 2003/06. PLoS One, 2010, vol. 5, no. 1, pp. e8673. DOI: 10.1371/journal.pone.0008673
  100. Weichenthal S., Mallach G., Kulka R., Black A., Wheeler A., You H., St-Jean M., Kwiatkowski R., Sharp D. A randomized double-blind crossover study of indoor air filtration and acute changes in cardiorespiratory health in a First Nations community. Indoor Air, 2013, vol. 23, no. 3, pp. 175–184. DOI: 10.1111/ina.12019
  101. Allen R.W., Carlsten C., Karlen B., Leckie S., van Eeden S., Vedal S., Wong I., Brauer M. An air filter intervention study of endothelial function among healthy adults in a woodsmoke-impacted community. Am. J. Respir. Crit. Care Med., 2011, vol. 183, no. 9, pp. 1222–1230. DOI: 10.1164/rccm.201010-1572OC
  102. Langrish J.P., Mills N.L., Chan J.K., Leseman D.L., Aitken R.J., Fokkens P.H., Cassee F.R., Li J. [et al.]. Beneficial cardiovascular effects of reducing exposure to particulate air pollution with a simple facemask. Part. Fibre Toxicol., 2009, vol. 6, pp. 8. DOI: 10.1186/1743-8977-6-8
  103. Pope C.A. 3rd., Ezzati М., Dockery D.W. Fine-particulate air pollution and life expectancy in the United States. N. Engl. J. Med., 2009, vol. 360, no. 4, pp. 376–386. DOI: 10.1056/NEJMsa0805646
  104. Morishita M., Thompson K.C., Brook R.D. Understanding air pollution and cardiovascular diseases: is it preventable? Curr. Cardiovasc. Risk Rep., 2015, vol. 9, no. 6, pp. 30. DOI: 10.1007/s12170-015-0458-1
  105. Huang W., Wang G., Lu S.-E., Kipen H., Wang Y., Hu M., Lin W., Rich D. [et al.]. Inflammatory and oxidative stress responses of healthy young adults to changes in air quality during the Beijing Olympics. Am. J. Respir. Crit. Care Med., 2012, vol. 186, no. 11, pp. 1150–1159. DOI: 10.1164/rccm.201205-0850OC

You are here