Toxicological and hygienic assessment of titanium dioxide nanoparticles as a component of E171 food additive (review of the literature and metahanalysis)

View or download the full article: 
UDC: 
613.23: 546.824-31
Authors: 

I.V. Gmoshinski1, O.V. Bagryantseva1,2, S.A. Khotimchenko1,2

Organization: 

1Federal Research Center for Nutrition, Biotechnology and Food Safety, 2/14 Ust'inskiy proezd, Moscow, 109240, Russian Federation
2 I.M. Sechenov First Moscow State Medical University (Sechenov University), Bldg. 2, 8 Trubetskaya Str., Moscow, 119991, Russian Federation

Abstract: 

The review focuses on exposure values, biological availability, toxic effects, and risks caused by nanoparticles of TiO2 under their oral introduction into a body as a food coloring agent or E171 food additive, or as a significant component in its structure. According to toxicological assessment performed by JECFA in 1969, TiO2 is considered to be insignificantly hazardous. However, at present experts employed by several foreign and international organizations that deal with food safety believe that the assessment should be reviewed as there are new scientific data on adverse effects produced by nano-sized TiO2 on a human body. Overall intake of TiO2 by people with food products, cosmetics (tooth pastes) and medications can vary from 0.5 to 5 mg a day; children aged 3–9 and teenagers aged 10–17 are the most exposed population groups. Despite insignificant intestinal absorption of TiO2 nano- and micro-sized particles, a lot of scientific works revealed their overall toxic effects produced on a body under oral and intragastric introduction. Detected effects produced by TiO2 include organotoxic (mostly hepatotoxic) ones, genotoxicity, immune toxicity, reproductive toxicity, and neurotoxicity. Still, there haven't been any data on carcinogenic effects produced by TiO2 when it is introduced into the gastrointestinal tract. Presumably, some effects produced by TiO2 nanoparticles are mediated by their local impacts on the lymphoid tissue associated with an intestinal mucosa as well as on the structure and activity of intestinal microbiocenosis, and nanoparticles are not necessarily absorbed in the intestines in the process. We performed meta-analysis of 64 articles (published over 2007–2019) which complied with criteria related to scientific authenticity and completeness; the meta-analysis revealed that a probable NOAEL for nano-sized TiO2 amounted to less than 10 mg/kg of body weight a day, and a daily reference safe dose of the substance is estimated as being equal to 0.1 mg/kg of body weight. Given all the above-mentioned, a risk caused by TiO2 intake as E171 food additive depends on nanoparticles fracture in its composition and it can be unacceptably high if this fracture exceeds 10 % of the overall TiO2 mass. Therefore, it is necessary to control and regulate TiO2 nanoparticles contents in the structure of E171 food additive that is applied in food industry.

Keywords: 
titanium dioxide, food additive, nanoparticles, exposure, biological availability, toxicity, intestinal microbiocenosis, risks
Gmoshinski I.V., Bagryantseva O.V., Khotimchenko S.A. Toxicological and hygienic assessment of titanium dioxide nano-particles as a component of E171 food additive (review of the literature and metahanalysis). Health Risk Analysis, 2019, no. 2, pp. 145–163. DOI: 10.21668/health.risk/2019.2.17.eng
References: 
  1. Jovanoviс B. Critical review of public health regulations of titanium dioxide, a human food additive. Integrated environmental assessment and management, 2014, vol. 11, no. 1, pp. 10–20.
  2. Rompelberg C., Heringa M.B., van Donkersgoed G., Drijvers J., Roos A., Westenbrink S. [et al.]. Oral intake of added titanium dioxide and its nanofraction from food products, food supplements and toothpaste by the Dutch population. Nanotoxicology, 2016, vol. 10, no. 10, pp. 1404–1414.
  3. Ropers M.-H., Terrisse H., Mercier-Bonin M., Humbert B. Titanium dioxide as food additive. IntechOpen, 2017. Available at: https://www.researchgate.net/publication/318776206_Titanium_Dioxide_as_F... (19.03.2019).
  4. Powell J.J., Faria N., Thomas‐McKay E., Pele L.C. Origin and fate of dietary nanoparticles and microparticles in the gastrointestinal tract. J. Autoimmun, 2010, vol. 34, pp. J226–J233.
  5. Specifications for the identity and purity of food additives and their toxicological evaluation: some food colours, emulsifiers, stabilizers, anticaking agents, and certain other substances, thirteenth report of the Joint FAO/WHO Expert Committee on Food Additives, Rome, 27 May – 4 June 1969. Geneva: World Health Organization, 1970, 31 p. Available at: https://apps.who.int/iris/handle/10665/40773 (19.03.2019).
  6. Opinion of the Scientific panel on food additives, flavourings, processing aids and materials in contact with food on a request from the Commission related to the safety in use of rutile titanium dioxide as an alternative to the presently permitted anatase form. EFSA Journal, 2004, vol. 163, pp. 1–12.
  7. EFSA Panel on Food Additives and Nutrient Sources added to Food. Scientific opinion on the re-evaluation of titanium dioxide (E 171) as a food additive. EFSA Journal, 2016, vol. 14, no. 9, pp. 83.
  8. Federal Register. Color additives. Washington (DC), USA, P. Federal Register, 1966, vol. 8, no. 21, 31, pp. 1065.
  9. US Food and Drug Administration. Titanium dioxide. Washington (DC). P. USFDA. Code of Federal Regulations, 2005, no. 21, Section 73.575. Available at: http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfCFR/CFRSearch.cfm? fr1/473.575 (19.03.2019).
  10. Specifications and standards for foods, food additives, etc. under the Food Sanitation Act.Tokyo, Japan: JETRO. Ex-ternal Trade Organization, 2011. Available at: http://www.jetro.go.jp/en/reports/regulations/pdf/foodext2010e.pdf (19.03.2019).
  11. Food Safety and Standards. India: Food safety and standards (food product standards and food additives) regulation. Gazette of India: Extraordinary, 2011, vol. 4, pp. 449–529.
  12. Chen X.‐X., Cheng B., Yang Y.‐X., Cao A., Liu J.‐H., L.J. Du [et al.]. Characterization and preliminary toxicity assay of nano‐titanium dioxide additive in sugar‐coated chewing gum. Small, 2013, vol. 9, pp. 1765–1774.
  13. European Parliament. European Parliament, Council Directive on Colours, 94/36/EC. OJEC, 1994, pp. 13–29.
  14. Opinion on titanium dioxide (nano form) COLIPA n S75. Scientific Committee on Consumer Safety European Com-mission. S75.SCSS/1516/13. Luxembourg, 2013. Available at: https://ec.europa.eu/health/scientific_committees/consumer_sa-fety/docs/... (19.03.2019).
  15. Duan Y., Liu J., Ma L., Li N., Liu H., Wang J. [et al.]. Toxicological characteristics of nanoparticulate anatase titanium dioxide in mice. Biomaterials, 2010, vol. 31, pp. 894–899.
  16. Hu R., Gong X., Duan Y., Li N., Che Y., Cui Y. [et al.]. Neurotoxicological effects and the impairment of spatial recognition memory in mice caused by exposure to TiO2 nanoparticles. Biomaterials, 2010, vol. 31, pp. 8043–8050.
  17. Weir A., Westerhoff P., Fabricius L., Hristovski K., von Goetz N. Titanium dioxide nanoparticles in food and personal care products. Environ. Sci. Technol., 2012, vol. 46, pp. 2242–2250.
  18. European Commission. Commission recommendation of 18 October 2011 on the definition of nanomaterial (2011/696/EU). OJEC, 2011, pp. L275/38–L275/40. Available at: https://ec.europa.eu/research/industrial_technologies/pdf/po-licy/commis... (19.03.2019).
  19. Peters R.J., van Bemmel G., Herrera-Rivera Z., Helsper H.P., Marvin H.J., Weigel S., [et al.]. Characterization of tita-nium dioxide nanoparticles in food products: analytical methods to define nanoparticles. J. Agric. Food Chem, 2014, vol. 62, no. 27, pp. 6285–6293.
  20. Shi H., Magaye R., Castranova V., Zhao J. Titanium dioxide nanoparticles: a review of current toxicological data. Particle Fibre Toxicol., 2013, vol. 10, pp. 15.
  21. Dietary intake of food additives in the UK: initial surveillance (food surveillance paper 37). London, UK: Ministry of Agriculture, Fisheries and Food, 1993, 67 p.
  22. Heringa M.B., Geraets L., van Eijkeren J.C.H., Vandebriel R.J., de Jong W.H., Oomen A.G. Risk assessment of tita-nium dioxide nanoparticles via oral exposure, including toxicokinetic considerations. Nanotoxicology, 2016, vol. 10, pp. 1515–1525.
  23. Bachler G., von Goetz N., Hungerbuhler K. Using physiologically based pharmacokinetic (PBPK) modeling for dietary risk assessment of titanium dioxide (TiO2) nanoparticle. Nanotoxicology, 2015, vol. 9, no. 3, pp. 373–380.
  24. Koeneman B.A., Zhang Y., Westerhoff P., Chen Y., Crittenden J.C., Capco D.G. Toxicity and cellular responses of in-testinal cells exposed to titanium dioxide. Cell. Biol. Toxicol, 2010, vol. 26, no. 3, pp. 225–238.
  25. Song Z.M., Chen N., Liu J.H., Tang H., X. Deng, W.S. Xi [et al.]. Biological effect of food additive titanium dioxide nanoparticles on intestine: an in vitro study. J. Appl. Toxicol, 2015, vol. 35, no. 10, pp. 1169–1178.
  26. Janer G., Mas del Molino E., Fernández-Rosas E., Fernández A., Vázquez-Campos S. Cell uptake and oral absorption of titanium dioxide nanoparticles. Toxicol. Lett, 2014, vol. 228, no. 2, pp. 103–110.
  27. Onishchenko G.E., Erokhina M.V., Abramchuk S.S., Shaytan K.V., Raspopov R.V., Smirnova V.V. [et al.]. The effect of titanium dioxide nanoparticles on the state of the small intestinal mucosa of rats. Byulleten’ eksperimental’noi biologii i meditsiny, 2012, vol. 154, no. 8, pp. 231–237 (in Russian).
  28. Jani P.U., McCarthy D.E., Florence A.T. Titanium dioxide (rutile) particle uptake from the rat GI tract and translocation to systemic organs after oral administration. Int. J. Pharm, 1994, vol. 105, pp. 157–168.
  29. Wang J., Zhou G., Chen C., Yu H., Wang T., Ma Y. [et al.]. Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol. Lett, 2007, vol. 168, no. 2, pp. 176–185.
  30. Cui Y., Liu H., Zhou M., Duan Y., Li N., Gong X. [et al.]. Signaling pathway of inflammatory responses in the mouse liver caused by TiO2 nanoparticles. J. Biomed. Mater. Res. A, 2011, vol. 96, no. 1, pp. 221–229.
  31. Sang X., Zheng L., Sun Q., Li N., Cui Y., Hu R. [et al.]. The chronic spleen injury of mice following long‐term expo-sure to titanium dioxide nanoparticles. J. Biomed. Mater. Res. A, 2012, vol. 100A, pp. 894–902.
  32. Sang X., Li B., Ze Y., Hong J., Ze X., Gui S. [et al.]. Toxicological mechanisms of nanosized titanium dioxide‐induced spleen injury in mice after repeated peroral application. J. Agr. Food Chem., 2013, vol. 61, pp. 5590–5599.
  33. Sang X., Fei M., Sheng L., Zhao X., Yu X., Hong J. [et al.]. Immunomodulatory effects in the spleen‐injured mice following exposure to titanium dioxide nano-particles. J. Biomed. Mater. Res. A, 2013, vol. 102A, pp. 3562–3572.
  34. Tassinari R., Cubadda F., Moracci G., Aureli F., D'Amato M., Valeri M. [et al.]. Oral, short-term exposure to titanium dioxide nanoparticles in Sprague-Dawley rat: focus on reproductive and endocrine systems and spleen. Nanotoxicology, 2014, vol. 8, no. 6, pp. 654–662.
  35. Shrivastava R., Raza S., Yadav A., Kushwaha P., Flora S.J. Effects of sub-acute exposure to TiO2, ZnO and Al2O3 nanoparticles on oxidative stress and histological changes in mouse liver and brain. Drug. Chem. Toxicol., 2014, vol. 37, no. 3, pp. 336–347.
  36. Ze Y., Sheng L., Zhao X., Ze X., Wang X., Zhou Q. [et al.]. Neurotoxic characteristics of spatial recognition damage of the hippocampus in mice following subchronic peroral exposure to TiO2 nanoparticles. J. Hazard Mater., 2014, vol. 264, pp. 219–229.
  37. Mohamed H.R. Estimation of TiO₂ nanoparticle-induced genotoxicity persistence and possible chronic gastritis-induction in mice. Food Chem. Toxicol., 2015, vol. 83, pp. 76–83.
  38. Ammendolia M.G., Iosi F., Maranghi F., Tassinari R., Cubadda F., Aureli F. [et al.]. Short-term oral exposure to low doses of nano-sized TiO2 and potential modulatory effects on intestinal cells. Food Chem. Toxicol., 2017, vol. 102, pp. 63–75.
  39. Hu H., Guo Q., Wang C., Ma X., He H., Oh Y. [et al.]. Titanium dioxide nanoparticles increase plasma glucose via re-active oxygen species-induced insulin resistance in mice. J. Appl. Toxicol., 2015, vol. 35, no. 10, pp. 1122–1132.
  40. Hong F., Zhou Y., Zhao X., Sheng L., Wang L. Maternal exposure to nanosized titanium dioxide suppresses embryonic development in mice. Int. J. Nanomedicine, 2017, vol. 12, pp. 6197–6204.
  41. Yang J., Luo M., Tan Z., Dai M., Xie M., Lin J. [et al.]. Oral administration of nano-titanium dioxide particle disrupts hepatic metabolic functions in a mouse model. Environ. Toxicol. Pharmacol., 2017, vol. 49, pp. 112–118.
  42. Сho W.S., Kang B.C., Lee J.K., Jeong J., Che J.H., Seok S.H. Comparative absorption, distribution, and excretion of titanium dioxide and zinc oxide nanoparticles after repeated oral administration. Part. Fibre Toxicol., 2013, vol. 10, p. 9.
  43. Geraets L., Oomen A.G., Krystek P., Jacobsen N.R., Wallin H., Laurentie M. [et al.]. Tissue distribution and elimination after oral and intravenous administration of different titanium dioxide nanoparticles in rats. Part. Fibre Toxicol., 2014, vol. 11, p. 30.
  44. Martins A.D.C., Azevedo L.F., De Souza Rocha C.C., Carneiro M.F.H., Venancio V.P., De Almeida M.R. [et al.]. Evaluation of distribution, redox parameters, and genotoxicity in Wistar rats co-exposed to silver and titanium dioxide nanopar-ticles. J. Toxicol. Environ. Health A, 2017, vol. 80, no. 19–21, pp. 1156–1165.
  45. Donner E.M., Myhre A., Brown S.C., Boatman R., Warheit D.B. In vivo micronucleus studies with 6 titanium dioxide materials (3 pigment-grade & 3 nanoscale) in orally-exposed rats. Regul. Toxicol. Pharmacol., 2016, vol. 74, pp. 64–74.
  46. Gu N., Hu H., Guo Q., Jin S., Wang C., Oh Y. [et al.]. Effects of oral administration of titanium dioxide fine-sized par-ticles on plasma glucose in mice. Food Chem. Toxicol., 2015, vol. 86, pp. 124–131.
  47. Buzulukov Yu.P., Gmoshinski I.V., Raspopov R.V., Demin V.F., Solov’yev V.Yu., Kuz’min P.G. [et al.]. Studies of Some Inorganic Nanoparticles after Intragastric Administration to Rats Using Radioactive. Meditsinskaya radiologiya i radi-atsionnaya bezopasnost’, 2012, vol. 57, no. 3, pp. 5-12 (in Russian).
  48. Gmoshinski I.V., Khotimchenko S.A., Popov V.O., Dzantiev B.B., Zherdev A.V., Demin V.F., Buzulukov Yu.P. Nanomaterials and nanotechnologies: methods of analysis and control. Russian Chemical Reviews, 2013, vol. 82, no. 1, pp. 48–76.
  49. Bu Q., Yan G., Deng P., Peng F., Lin H., Xu Y. [et al.]. NMR-based metabonomic study of the sub-acute toxicity of ti-tanium dioxide nanoparticles in rats after oral administration. Nanotechnology, 2010, vol. 21, no. 12, 125105 p.
  50. Raspopov R.V., Vernikov V.M., Shumakova A.A., Sentsova T.B., Trushina E.N., Mustafina O.K. [et al.]. Toxicological sanitary characterization of titanium dioxide nanoparticles introduced in gastrointestinal tract of rats. Communication 1. Integral, biochemical and hematoliogic indices, intestinal absorption of macro-molecules DNA damage. Voprosy pitaniya, 2010, vol. 79, no. 4, pp. 21–30 (in Russian).
  51. Tananova O.N., Arianova E.A., Gmoshinski I.V., Aksenov I.V., Zgoda V.G., Khotimchenko S.A. Influence of anatase titanium dioxide nanoparticles on protein expression profiles in rat liver microsomes. Voprosy pitaniya, 2012, vol. 81, no. 2, pp. 18–22 (in Russian).
  52. Cui Y., Gong X., Duan Y., Li N., Hu R., Liu H. [et al.]. Hepatocyte apoptosis and its molecular mechanisms in mice caused by titanium dioxide nanoparticles. J. Hazard Mater, 2010, vol. 183, no. 1–3, pp. 874–880.
  53. Orazizadeh M., Fakhredini F., Mansouri E., Khorsandi L. Effect of glycyrrhizic acid on titanium dioxide nanoparticles-induced hepatotoxicity in rats. Chem. Biol. Interact, 2014, vol. 220, pp. 214–221.
  54. Shukla R.K., Kumar A., Vallabani N.V., Pandey A.K., Dhawan A. Titanium dioxide nanoparticle-induced oxidative stress triggers DNA damage and hepatic injury in mice. Nanomedicine (Lond), 2014, vol. 9, no. 9, pp. 1423–1434.
  55. Azim S.A., Darwish H.A., Rizk M.Z., Ali S.A., Kadry M.O. Amelioration of titanium dioxide nanoparticles-induced liver injury in mice: possible role of some antioxidants. Exp. Toxicol. Pathol., 2015, vol. 67, pp. 305–314.
  56. Wang Y., Chen Z.J., Ba T., Pu J., Cui X.X., Jia G. [Effects of TiO₂ nanoparticles on antioxidant function and element content of liver and kidney tissues in young and adult rats]. Beijing Da Xue Xue Bao Yi Xue Ban, 2014, vol. 46, no. 3, pp. 395–399 (in Chinese).
  57. Chen Z., Wang Y., Zhuo L., Chen S., Zhao L., Luan X. [et al.]. Effect of titanium dioxide nanoparticles on the cardiovascular system after oral administration. Toxicol. Lett., 2015, vol. 239, no. 2, pp. 123–130.
  58. Jensen D.M., Christophersen D.V., Sheykhzade M., Skovsted G.F. [et al.]. Vasomotor function in rat arteries after ex vivo and intragastric exposure to food-grade titanium dioxide and vegetable carbon particles. Part. Fibre Toxicol., 2018, vol. 15, no. 1, p. 12.
  59. Hu H., Li L., Guo Q., Jin S., Zhou Y., Oh Y. [et al.]. A mechanistic study to increase understanding of titanium dioxide nanoparticles-increased plasma glucose in mice. Food Chem. Toxicol., 2016, vol. 95, pp. 175–187.
  60. Canli E.G., Atli G., Canli M. Response of the antioxidant enzymes of the erythrocyte and alterations in the serum biomarkers in rats following oral administration of nanoparticles. Environ. Toxicol. Pharmacol., 2017, vol. 50, pp. 145–150.
  61. Hu H., Li L., Guo Q., Zong H., Yan Y., Yin Y. [et al.]. RNA sequencing analysis shows that titanium dioxide nanoparticles induce endoplasmic reticulum stress, which has a central role in mediating plasma glucose in mice. Nanotoxicology, 2018, vol. 12, no. 4, pp. 341–356.
  62. Wang Y., Chen Z., Ba T., Pu J., Chen T., Song Y. [et al.]. Susceptibility of young and adult rats to the oral toxicity of titanium dioxide nanoparticles. Small, 2013, vol. 9, no. 9–10, pp. 1742–1752.
  63. Chen Z., Zhou D., Zhou S., Jia G. Gender difference in hepatic toxicity of titanium dioxide nanoparticles after subchronic oral exposure in Sprague-Dawley rats. J. Appl. Toxicol., 2019. Available at: https://www.ncbi.nlm.nih.gov/pubmed/30644115 (19.03.2019). DOI: 10.1002/jat.3769
  64. Warheit D.B., Brown S.C., Donner E.M. Acute and subchronic oral toxicity studies in rats with nanoscale and pigment grade titanium dioxide particles. Food Chem. Toxicol., 2015, vol. 84, pp. 208–224.
  65. Sycheva L.P., Zhurkov V.S., Iurchenko V.V., Daugel-Dauge N.O., Kovalenko M.A., Krivtsova E.K., Durnev A.D. In-vestigation of genotoxic and cytotoxic effects of micro- and nanosized titanium dioxide in six organs of mice in vivo. Mutat. Res. 2011, vol. 726, no. 1, pp. 8–14.
  66. Grissa I., Elghoul J., Ezzi L., Chakroun S., Kerkeni E., Hassine M. [et al.]. Anemia and genotoxicity induced by sub-chronic intragastric treatment of rats with titanium dioxide nanoparticles. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2015, vol. 794, pp. 25–31.
  67. Akhal’tseva L.V., Moshkov N.E., Ingel’ F.I., Yurtseva N.A., Yurchenko V.V. Effect of titanium dioxide nano- and microparticles on the values of the micronucleus test with human whole blood. Gigiena i sanitariya, 2011, no. 5, pp. 61–63 (in Russian).
  68. Chen Z., Wang Y., Ba T., Li Y., Pu J., Chen T. [et al.]. Genotoxic evaluation of titanium dioxide nanoparticles in vivo and in vitro. Toxicol. Lett., 2014, vol. 226, no. 3, pp. 314–319.
  69. Donner E.M., Myhre A., Brown S.C., Boatman R., Warheit D.B. In vivo micronucleus studies with 6 titanium dioxide materials (3 pigment-grade & 3 nanoscale) in orally-exposed rats. Regul. Toxicol. Pharmacol., 2016, vol. 74, pp. 64–74.
  70. Arianova E.A., Shumakova A.A., Tananova O.N., Trushina E.N., Mustafina O.K., Sharanova N.E. [et al.]. Influence of dioxide titanium nanoparticles on immune system indicators in rats. Voprosy pitaniya, 2012, vol. 84, no. 6, pp. 47–53 (in Russian).
  71. Wang J., Li N., Zheng L., Wang S., Wang Y., Zhao X. [et al.]. P38‐Nrf‐2 signaling pathway of oxidative stress in mice caused by nanoparticulate TiO2. Biol. Trace Elem. Res., 2011, vol. 140, pp. 186–197.
  72. Jia F., Sun Z., Yan X., Zhou B., Wang J. Effect of pubertal nano-TiO2 exposure on testosterone synthesis and sper-matogenesis in mice. Arch. Toxicol., 2014, vol. 88, no. 3, pp. 781–788.
  73. Shahin N.N., Mohamed M.M. Nano-sized titanium dioxide toxicity in rat prostate and testis: possible ameliorative effect of morin. Toxicol. Appl. Pharmacol., 2017, vol. 334, pp. 129–141.
  74. Warheit D.B., Boatman R., Brown S.C. Developmental toxicity studies with 6 forms of titanium dioxide test materials (3 pigment-different grade & 3 nanoscale) demonstrate an absence of effects in orally-exposed rats. Regul. Toxicol. Pharmacol., 2015, vol. 73, no. 3, pp. 887–896.
  75. Grissa I., Guezguez S., Ezzi L., Chakroun S., Sallem A., Kerkeni E. [et al.]. The effect of titanium dioxide nanoparticles on neuroinflammation response in rat brain. Environ. Sci. Pollut. Res. Int., 2016, vol. 23, no. 20, pp. 20205–20213.
  76. International Agency for Research on Cancer. Carbon black, titanium dioxide, and talc. Monographs on the evaluation of carcinogenic risks to humans. IARC, Lyon, 2010, vol. 93, pp. 1–452.
  77. NCI (National Cancer Institute). Bioassay of titanium dioxide for possible carcinogenicity. Carcinogenesis Technical Report Series, 1979, no. 97, pp. 1–123.
  78. Sohal I.S., O’Fallon K.S., Gaines P., Demokritou P., Bello D. Ingested engineered nanomaterials: state of science in nanotoxicity testing and future research needs. Part. Fibre Toxicol., 2018, vol. 15, p. 29.
  79. Fisichella M., Berenguer F., Steinmetz G., Auffan M., Rose J., Prat O. Intestinal toxicity evaluation of TiO2 degraded surface-treated nanoparticles: a combined physico-chemical and toxicogenomics approach in Caco-2 cells. Part. Fibre Toxicol., 2012, vol. 9, pp. 18.
  80. Jo M.R., Yu J., Kim H.J., Song J.H., Kim K.M., Oh J.M. [et al.]. Titanium dioxide nanoparticle-biomolecule interactions influence oral absorption. Nanomaterials (Basel), 2016, vol. 6, no. 12, pp. E225.
  81. Faust J.J., Doudrick K., Yang Y., Westerhoff P., Capco D.G. Food grade titanium dioxide disrupts intestinal brush border microvilli in vitro independent of sedimentation. Cell. Biol. Toxicol., 2014, vol. 30, no. 3, pp. 169–188.
  82. Nogueira C.M., De Azevedo W.M., Dagli M.L., Toma S.H., Leite A.Z., Lordello M.L. [et al.]. Titanium dioxide induced inflammation in the small intestine. World J. Gastroenterol., 2012, vol. 18, pp. 4729–4735.
  83. Guo Z., Martucci N.J., Moreno-Olivas F., Tako E., Mahler G.J. Titanium dioxide nanoparticle ingestion alters nutrient absorption in an in vitro model of the small intestine. NanoImpact, 2017, vol. 5, pp. 70–82.
  84. Hou J., Wang L., Wang C., Zhang S., Liu H., Li S. [et al.]. Toxicity and mechanisms of action of titanium dioxide na-noparticles in living organisms. J. Environ. Sci., 2019, vol. 75, pp. 40–53.
  85. Fröhlich E.E., Fröhlich E. Cytotoxicity of nanoparticles contained in food on intestinal cells and the gut microbiota. J. Mol. Sci., 2016, vol. 17, pp. 509.
  86. Sheveleva S.A., Kuznetsova G.G., Batishcheva S.Yu., Efimochkina N.R., Vernikov V.M., Smirnova V.V. [et al.]. Toxi-cological sanitary characterization of titanium dioxide nanoparticles introduced in gastrointestinal tract of rats. Communication 2. Intestinal microbiocenosis condition and allergic sensitivity. Voprosy pitaniya, 2010, vol. 79, no. 5, pp. 29–34 (in Russian).
  87. Dudefoi W., Moniz K., Allen-Vercoe E., Ropers M.H., Walker V.K. Impact of food grade and nano-TiO2 particles on a human intestinal community. Food Chem. Toxicol., 2017, vol. 106, Pt A, pp. 242–249.
  88. Li J., Yang S., Lei R., Gu W., Qin Y., Ma S. [et al.]. Oral administration of rutile and anatase TiO2 nanoparticles shifts mouse gut microbiota structure. Nanoscale, 2018, vol. 10, no. 16, pp. 7736–7745.
Received: 
27.03.2019
Accepted: 
23.05.2019
Published: 
30.06.2019

You are here