NK-cells that identify glycopatterns and their anti-tumor potential against a background of epidemically significant viral infections

View or download the full article: 
UDC: 
617.741-004.1-053.9
Authors: 

M.V. Lakhtin, V.М. Lakhtin, V.А. Aleshkin, S.S. Afanasiev

Organization: 

G.N. Gabrichevskiy's Moscow Scientific Research Institute for Epidemiology and Microbiology, 10 Admirala Makarova Str., Moscow, 212125, Russian Federation

Abstract: 

Risks related to tumors development against a background of viral infections as well as factors that determine such risks or reduce them have not been examined profoundly so far. Our research goal was to accomplish a scientific review of research on a potential possessed by populations of lectin NK-cells (natural killers) in a body; such populations can have variable sets of lectin and other functionally significant cell surface receptors against tumors in a situation when viruses, including epidemically significant ones, penetrate a body. It is shown that co-functioning of various receptors and their ligands that redistribute cytokines (glycopattern-identifying lectin (basis) receptors, Ig-similar receptors, cytotoxic receptors, and other effector (adjusting) receptors) plays a significant role in intercellular communications and effects produced by NK-populations. NK-populations network is a promising resource for body protection and it should be taken into account when developing new anti-tumor and anti-viral preventive and medical strategies. When certain NK-populations with protective functions are absent in a body, it can be considered a new multi-factor risk of viral and oncologic diseases in an individual or a contingent living in a specific region. The reviewed data can be applied to develop new anti-tumor and anti-viral medications and vaccines as well as medical strategies. Probiotic lectins are promising ligands of intercellular communications associated with immune surveillance.

Keywords: 
viral infections, tumors, multi-factor disease, risk factors, receptor lectins, NK-cells, anti-tumor strategies
Lakhtin M.V., Lakhtin V.М., Aleshkin V.А., Afanasiev S.S. NK-cells that identify glycopatterns and their anti-tumor potential against a background of epidemically significant viral infections. Health Risk Analysis, 2019, no. 1, pp. 144–153. DOI: 10.21668/health.risk/2019.1.16.eng
References: 
  1. Lakhtin M.V., Lakhtin V.M., Aleshkin V.A. Afanas'ev C.S. Lektinovye retseptory v kommunikatsiyakh. News of science and education, 2018, vol. 2, no. 3, pp. 76–98 (in Russian).
  2. Lakhtin M.V., Lakhtin V.M., Aleshkin V.A., Afanas'ev M.S. Afanas'ev S.S. Lektiny v antirakovykh strategiyakh. Acta Biomedica Scientifica, 2018, vol. 3, no. 4, pp. 69–77 (in Russian).
  3. Lakhtin M.V., Lakhtin V.M., Afanas'ev S.S., Aleshkin V.A. Novye glikokon"yugaty-raspoznayushchie sistemy v prognozirovanii antiinfektsionnogo interaktoma cheloveka. Zdorov'e i obrazovanie v XXI veke. Seriya Meditsina, 2015, vol. 17, no. 4, pp. 378–383 (in Russian).
  4. Lakhtin M.V., Lakhtin V.M., Afanas'ev S.S. [et al.]. Nadzor za mikrobiotsenozami: novye podkhody. Obespechenie epidemiologicheskogo blagopoluchiya: vyzovy i resheniya: materialy XI s"ezda Vserossiiskogo nauchno-prakticheskogo obshchestva epidemiologov, mikrobiologov i parazitologov. Мoscow, 2017. In: A. Yu. Popova ed. Sankt-Peterburg, FBUN NII epidemiologii i mikrobiologii imeni Pastera Publ., 2017, 436 p. (in Russian).
  5. Lakhtin M.V., Lakhtin V.M., Afanas'ev S.S., Bairakova A.L., Aleshkin V.A., Afanas'ev M.S. Kandidnye markery boleznei urogenital'nykh biotopov: reaktivnost' k lektinam probiotikov. Acta Biomedica Scientifica, 2018, vol. 3, no. 1, pp. 49–53 (in Russian).
  6. Bigley A.B., Rezvani K., Shah N., Sekine T., Balneger N., Pistillo M. [et al.]. Latent cytomegalovirus infection enhances anti-tumour cytotoxicity through accumulation of NKG2C+ NK cells in healthy humans. Clinical & Experimental Immunology, 2016, vol. 185, no. 2, pp. 239–251.
  7. Chijioke O., Landtwing V., Münz C. NK cell influence on the outcome of primary Epstein-Barr virus infection. Frontiers Immunology, 2016, vol.7, no 323. DOI: 10.3389/fimmu.2016.00323
  8. Crane C.A., Austgen K., Haberthur K., Hofmann C., Moyes K.W, Avanesyan L. Immune evasion mediated by tumor-derived lactate dehydrogenase induction of NKG2D ligands on myeloid cells in glioblastoma patients [et al.]. Proceedings of the National Academy of Sciences of the United States of America, 2014, vol. 111, no 35, pp. 12823–12828.
  9. Demoulin B., Cook W.J., Murad J., Graber D.J., Sentman M.-L., Lonez C. Exploiting natural killer group 2D receptors for CAR T-cell therapy [et al.]. Future Oncology, 2017, vol. 13, no. 18, pp. 1593–1605.
  10. Djaoud Z., Riou R., Gavlovsky P.J., Mehlal S., Bressollette C., Gérard N. [et al.]. Cytomegalovirus-infected primary endothelial cells trigger NKG2C+ natural killer cells. Journal of Innate Immunity, 2016, vol. 8, no. 4, pp. 374–385.
  11. Djaoud Z., Guethlein L.A., Horowitz A., Azzi T., Nemat-Gorgani N., Olive D., Nadal D. [et al.]. Two alternate strate-gies for innate immunity to Epstein-Barr virus: One using NK cells and the other NK cells and gamma-delta T cells. The Journal of Experimental Medicine, 2017, vol. 214, no. 6, pp. 1827–1841.
  12. Dukovska D., Fernández-Soto D., Valés-Gómez M., Reyburn H.T. NKG2H-expressing T cells negatively regulate immune responses. Frontiers in Immunology, 2018, vol. 9, no. 390. DOI: 10.3389/fimmu.2018.00390
  13. Espinoza J.L., Nguyen V.H., Ichimura H., Pham T.T., Nguyen C.H., Pham T.V. [et al.]. A functional polymorphism in the NKG2D gene modulates NK-cell cytotoxicity and is associated with susceptibility to Human Papilloma Virus-related cancers. Scientific Reports, 2016, vol. 6, no. 39231. DOI: 10.1038/srep39231
  14. Espinoza J.L., Minami M. Sensing bacterial-induced DNA damaging effects via natural killer group 2 member D immune receptor: From dysbiosis to autoimmunity and carcinogenesis. Frontiers in Immunology, 2018, vol. 9, no. 52. DOI: 10.3389/fimmu.2018.00052
  15. Fehniger T.A., Cooper M.A. Harnessing NK cell memory for cancer immunotherapy. Trends in Immunology, 2016, vol. 37, no. 12, pp. 877–888.
  16. Fernandez L., Metais J.-Y., Escudero A., Vela M., Valentín J., Vallcorba I. [et al.]. Memory T Cells Expressing an NKG2D-CAR Efficiently Target Osteosarcoma Cells. Clinical Cancer Research, 2017, vol. 23, no. 19, pp. 5824–5835. DOI: 10.1158/1078-0432.CCR-17-0075
  17. Georgountzou A., Papadopoulos N.G. Postnatal innate immune development: From birth to adulthood. Frontiers in Immunology, 2017, vol. 8, no. 957. DOI: 10.3389/fimmu.2017.00957
  18. Grandi N., Cadeddu M., Pisano M.P., Esposito F., Blomberg J., Tramontano E. Identification of a novel HERV-K(HML10): Comprehensive characterization and comparative analysis in non-human primates provide insights about HML10 proviruses structure and diffusion. Mobile DNA, 2017, vol. 8, no. 15. DOI: 10.1186/s13100-017-0099-7
  19. Hatfield S.D., Daniels K.A., O'Donnell C.L., Waggoner S.N., Welsh R.M.Weak vaccinia virus-induced NK cell regulation of CD4 T cells is associated with reduced NK cell differentiation and cytolytic activity. Virology, 2018, vol. 519, pp. 131–144.
  20. Heiberg I.L., Pallett L.J., Winther T.N., Høgh B., Maini M.K., Peppa D. Defective natural killer cell anti-viral capacity in paediatric HBV infection. Clinical & Experimental Immunology, 2015, vol. 179, no. 3, pp. 466–476.
  21. Janelle V., Langlois M.P., Tarrab E., Lapierre P., Poliquin L., Lamarre A. Transient complement inhibition promotes a tumor-specific immune response through the implication of natural killer cells. Cancer Immunology Research, 2014, vol. 2, no. 3, pp. 200–206.
  22. Jud A., Kotur M., Berger C., Gysin C., Nadal D., Lünemann A. Tonsillar CD56brightNKG2A+ NK cells restrict primary Epstein-Barr virus infection in B cells via IFN-gamma. Oncotarget, 2017, vol. 8, no. 4, pp. 6130–6141.
  23. Koltan S., Debski R., Koltan A., Grzesk E., Tejza B., Eljaszewicz A. [et al.]. Phenotype of NK cells determined on the basis of selected immunological parameters in children treated due to acute lymphoblastic leukemia. Medicine (Baltimore), 2015, vol. 94, no. 52, 2369 p. DOI: 10.1097/MD.0000000000002369
  24. Mahapatra S., Mace E.M., Minard C.G., Forbes L.R., Vargas-Hernandez A., Duryea T.K. [et al.]. High-resolution phenotyping identifies NK cell subsets that distinguish healthy children from adults. Public Library of Science, 2017, vol. 12, no. 8, pp. e0181134. DOI: 10.1371/journal.pone.0181134
  25. Malone D.F.G., Lunemann S., Hengst J., Ljunggren H.G., Manns M.P., Sandberg J.K. [et al.]. Cytomegalovirus-driven adaptive-like natural killer cell expansions are unaffected by concurrent chronic hepatitis virus infections. Frontiers in Immunology, 2017, vol. 8, no. 525. DOI: 10.3389/fimmu.2017.00525
  26. Martinez D.R., Permar S.R., Fouda G.G. Contrasting adult and infant immune responses to HIV infection and vaccination. Clinical and Vaccine Immunology, 2015, vol. 23, no. 2, pp. 84–94.
  27. Muntasell A., Vilches C., Angulo A., López-Botet M. Adaptive reconfiguration of the human NK-cell compartment in response to cytomegalovirus: A different perspective of the host-pathogen interaction. European Journal of Immunology, 2013, vol. 43, no. 5, pp. 1133–1141.
  28. Münz C. Epstein-Barr virus-specific immune control by innate lymphocytes. Frontiers in Immunology, 2017, vol. 8, no. 1658. DOI: 10.3389/fimmu.2017.01658
  29. Muta T., Yoshihiro T., Jinnouchi F., Aoki K., Kochi Y., Shima T. [et al.]. Expansion of NKG2C-expressing natural killer cells after umbilical cord blood transplantation in a patient with peripheral T-cell lymphoma with cytotoxic molecules. Internal Medicine, 2018, vol. 57, no. 6, pp. 861–866.
  30. Peled J.U., Jenq R.R. Not just leukemia: CMV may protect against lymphoma recurrence after allogeneic transplant. Leukemia & Lymphoma, 2017, vol. 58, no. 4, pp. 759–761.
  31. Peppa D. Natural killer cells in human immunodeficiency virus-1 infection: spotlight on the impact of human cyto-megalovirus. Frontiers in Immunology, 2017, vol. 8, no. 1322. DOI: 10.3389/fimmu.2017.01322
  32. Phan M.T., Chun S., Kim S.H., Ali A.K., Lee S.H., Kim S. [et al.]. Natural killer cell subsets and receptor expression in peripheral blood mononuclear cells of a healthy Korean population: Reference range, influence of age and sex, and correlation between NK cell receptors and cytotoxicity. Human Immunology, 2017, vol. 78, no. 2, pp. 103–112.
  33. Pupuleku A., Costa-García M., Farré D., Hengel H., Angulo A., Muntasell A. [et al.]. Elusive role of the CD94/NKG2C NK cell receptor in the response to cytomegalovirus: Novel experimental observations in a reporter cell system. Frontiers in Immunology, 2017, vol. 8, no. 1317. DOI: 10.3389/fimmu.2017.01317
  34. Sehrawat S., Kumar D., Rouse B.T. Herpesviruses: Harmonious Pathogens but Relevant Cofactors in Other Diseases? Frontiers in Cellular and Infection Microbiology, 2018, vol. 8, no. 177. DOI: 10.3389/fcimb.2018.00177
  35. Sundström Y., Nilsson C., Lilja G., Kärre K., Troye-Blomberg M., Berg L. The expression of human natural killer cell receptors in early life. Scandinavian Journal of Immunology, 2007, vol. 66, no. 2–3, pp. 335–344.
  36. Stojanovic A., Correia M.P., Cerwenka A. The NKG2D/NKG2DL axis in the crosstalk between lymphoid and myeloid cells in health and disease. Frontiers in Immunology, 2018, vol. 9, no. 827. DOI: 10.3389/fimmu.2018.00827
  37. Thompson T.W., Jackson B.T., Li P.J., Wang J., Kim A.B., Huang K.T.H. [et al.]. Tumor-derived CSF-1 induces the NKG2D ligand RAE-1-delta on tumor-infiltrating macrophages. Elife, 2018, vol. 7, no. e32919. DOI: 10.7554/eLife.32919
  38. Uppendahl L.D., Dahl C.M., Miller J.S., Felices M., Geller M.A. Natural killer cell-based immunotherapy in gyneco-logic malignancy: A review. Frontiers in Immunology, 2018, vol. 8, № 1825. DOI: 10.3389/fimmu.2017.01825
  39. Walter L., Petersen B. Diversification of both KIR and NKG2 natural killer cell receptor genes in macaques – implica-tions for highly complex MHC-dependent regulation of natural killer cells. Immunology, 2017, vol. 150, № 2, pp. 139–145.
  40. Wang Z., Guo L., Song Y., Zhang Y., Lin D., Hu B. [et al.]. Augmented anti-tumor activity of NK-92 cells expressing chimeric receptors of TGF-beta-R II and NKG2D. Cancer Immunology, Immunotherapy, 2017, vol. 66, no. 4, pp. 537–548.
  41. Zingoni A., Molfetta R., Fionda C., Soriani A., Paolini R., Cippitelli M. [et al.]. NKG2D and its ligands: "One for all, all for one". Frontiers in Immunology, 2018, vol. 9, no. 476. DOI: 10.3389/fimmu.2018.00476
Received: 
18.10.2018
Accepted: 
26.01.2019
Published: 
30.03.2019

You are here