Nanomaterials in food products and their package: comparative analysis of risks and advantages

View or download the full article: 
UDC: 
544.73: 613.2
Authors: 

I.V. Gmoshinski, V.A. Shipelin, S.A. Khotimchenko

Organization: 

Federal Research Center for Nutrition, Biotechnology and Food Safety, 2/14 Ust'inskiy proezd, Moscow, 109240, Russian Federation

Abstract: 

Nanomaterials (NMs) are applied in many spheres related to food products manufacturing including nano-dispersed forms of food substances, nano-encapsulates, and nano-micelles, food additives with improved functional characteristics, new packaging materials with enhanced gas-, photobarrier, and antimicrobic properties. High chemical and catalytic activity of nanoparticles (NPs) and their ability to penetrate through biological barriers and accumulate in a body makes a lot of NMs toxic, and their toxic properties are to be taken into account when assessing safety of the above-mentioned products. There are some priority NMs from the point of view of risk assessment and prospective hygienic standardization; they are silver NPs, NPs of amorphous silicon dioxide (aerosil), titanium dioxide NPs, and carbon nanotubes. Results of toxicological-hygienic research performed on laboratory animals revealed that a probable allowable daily dose of silicon dioxide (SiO2) NPs consumed with food should not exceed 1 mg/kg of body weight. And as nano-sized SiO2 is used as a food additive, an issue of its hygienic standardization and regulation is truly vital. Silver NPs exert various toxic effects that have been examined in vivo; these effects are based on their ability to promote a dozed release of cytotoxic ions of silver (Ag+) in target organs (first of all, in the liver) under exposure to endogenous oxidants. Signs of silver NPs toxicity become obvious starting from a dose equal to 1 mg/kg of body weight and a maximum no-observed-adverse-effect-level (NOAEL) can be estimated as 0.1 mg/kg. If values are recalculated for a human body taking into account adjusting coefficients, a non-hazardous dose of silver NPs under oral exposure amounts to 70 µg a day. This estimation coincides with the upper permissible level that is fixed in Russia for consumption of silver as a chemical element. Titanium dioxide NPs and carbon nanotubes considered as possible food contaminants in the long term cause population health risks that require profound toxicological-hygienic assessment.

Keywords: 
nanoparticles, silicon dioxide, titanium dioxide, carbon nanotubes, food additives, package, risk assessment
Gmoshinski I.V., Shipelin V.A., Khotimchenko S.A. Nanomaterials in food products and their package: comparative anal-ysis of risks and advantages. Health Risk Analysis, 2018, no. 4, pp. 134–142. DOI: 10.21668/health.risk/2018.4.16.eng
References: 
  1. Onishchenko G.G., Tutel'yan V.A., Gmoshinskiy I.V., Khotimchenko S.A. Development of the system for nano-materials and nanotechnology safety in Russian Federation. Gigiena i sanitariya, 2013, no. 1, pp. 4–11 (in Russian).
  2. Peters R.J.B., Bouwmeester H., Gottardo S., Amenta V., Arena M., Brandhoff P. [et al.]. Nanomaterials for products and application in agriculture, feed and food. Trends Food Sci. Technol, 2016, vol. 54, pp. 155–164.
  3. Tutel'yan V.A., Khotimchenko S.A., Gmoshinskiy I.V., Tyshko N.V., Gapparov M.M., Baturin A.K., [et al.]. Sovremennaya zakonodatel'naya, normativnaya i metodicheskaya baza v oblasti obespecheniya bezopasnosti pishchevoy produktsii v Rossiyskoy Federatsii [Modern legislative, regulatory and methodological framework in the field of food safety in the Russian Federation.]. Sovet Federatsii Federal'nogo sobraniya Rossiyskoy Federatsii. Analiticheskiy vestnik, 2013, vol. 500, no. 16, pp. 33–46 (in Russian).
  4. Shumakova A.A., Arianova E.A., Shipelin V.A., Sidorova Yu.S., Selifanov A.V., Trushina E.N. et al. Toxicological as¬sess¬ment of nanostructured silica. I. Integral indices, adducts of DNA, tissue thiols and apoptosis in liver. Voprosy pitaniya, 2014, vol. 83, no. 3, pp. 52–62 (in Russian).
  5. Silicon dioxide, amorphous. Available at: http://www.fao.org/filead¬min/user_upload/jecfa_addi¬tives/docs/Mono-graph1/Additive-385.pdf (16.01.2017).
  6. Van der Zande M., Vandebriel R.J., Groot M.J., Kramer E., Rivera Z.E.H., Rasmussen K. [et al.]. Subchronic toxicity study in rats orally exposed to nanostructured silica. Part. Fibre Toxicol, 2014, vol. 11, pp. 8.
  7. Shumakova A.A., Efimochkina N.R., Minaeva L.P., Bykova I.B., Batishcheva S.Yu., Markova Yu.M. [et al.]. Toxico-logical assessment of nanostructured silica. III. Microecological, hematological indices, state of cellular immunity. Voprosy pi-taniya, 2015, vol. 84, no. 4, pp. 55–65 (in Russian).
  8. Zaitseva N.V., Zemlyanova M.A., Zvezdin V.N., Dovbysh A.A., Gmoshinskiy I.V., Khotimchenko S.A. Impact of silica dioxide nanoparticles on the morphology of internal organs in rats by oral supplementation. Health Risk Analysis, 2016, no. 4, pp. 80–94. DOI: 10.21668/health.risk/2016.4.10.eng
  9. Titanium dioxide. World Health Organization. Available at: http://apps.who.int/food-additives-contaminants-jecfa-database/chemical.... (16.01.2017).
  10. EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS). EFSA Journal, 2016, vol. 14, no. 9, pp. 4545.
  11. Nohynek G.J., Lademann J., Ribaud C., Roberts M.S. Grey goo on the skin? Nanotechnology, cosmetic and sunscreen safety. Crit. Rev. Toxicol, 2007, vol. 37, no. 3, pp. 251–277. DOI: 10.1080/10408440601177780
  12. Park E.J., Yoon J., Choi K., Yi J., Park K. Induction of chronic inflammation in mice treated with titanium dioxide nanoparticles by intratracheal instillation. Toxicology, 2009, vol. 260, no. 1–3, pp. 37–46. DOI: 10.1016/j.tox.2009.03.005
  13. Bu Q., Yan G., Deng P., Peng F., Lin H., Xu Y. [et al.]. NMR-based metabonomic study of the sub-acute toxicity of titanium dioxide nanoparticles in rats after oral administration. Nanotechnology, 2010, vol. 21, no. 12, p. 125105. DOI: 10.1088/0957-4484/21/12/125105
  14. Raspopov R.V., Vernikov V.M., Shumakova A.A., Sentsova T.B., Trushina E.N., Mustafina O.K. [et al.]. Тoxicologi-cal sanitary characterization of titanium dioxide nanoparticles introduced in gastrointestinal tract of rats. Communication 1. Integral, biochemical and hematoliogic indices, intestinal absorption of macro-molecules DNA damage. Voprosy pitaniya, 2010, vol. 79, no. 4, pp. 21–30 (in Russian).
  15. Arianova E.A., Shumakova A.A., Tananova O.N., Trushina E.N., Mustafina O.K., Sharanova N.E., Gmoshinsky I.V., Khotimchenko S.A. Influence of dioxide titanium nanoparticles on immune system indicators in rats. Voprosy pitaniya, 2012, vol. 84, no. 6, pp. 47–53 (in Russian).
  16. Bettini S., Boutet-Robinet E., Cartier P., Coméra P., Gaultier E., Dupuy J. [et al.]. Food-grade TiO2 impairs intestinal and systemic immune homeostasis, initiates preneoplastic lesions and promotes aberrant crypt development in the rat colon. Sci. Rep, 2017, vol. 7, pp. 40373. DOI: 10.1038/srep40373
  17. Tananova O.N., Arianova E.A., Gmoshinskiy I.V., Aksenov I.V., Zgoda V.G., Khotimchenko S.A. Influence of ana-tase titanium dioxide nanoparticles on protein expression profiles in rat liver microsomes]. Voprosy pitaniya, 2012, vol. 81, no. 2, pp. 18–22 (in Russian).
  18. Koeneman B.A., Zhang Y., Westerhoff P., Chen Y., Crittenden J.p., Capco D.G. Toxicity and cellular responses of intestinal cells exposed to titanium dioxide. Cell. Biol. Toxicol, 2010, vol. 26, no. 3, рp. 225–238. DOI: 10.1007/s10565-009-9132-z
  19. Onishchenko G.E., Erokhina M.V., Abramchuk S.S., Shaitan K.V., Raspopov R.V., Smirnova V.V., Vasilevskaya L.S., Gmoshinski I.V., Kirpichnikov M.P., Tutel'yan V.A. Vliyanie nanochastits dioksida titana na sostoyanie slizistoi obolochki tonkoi kishki krys [The influence of titanium dioxide nanoparticles on the state of the mucous membrane of the small intestine of rats.]. Byulleten' eksperimental'noi biologii i meditsiny, 2012, vol. 154, no. 8, pp. 231–237 (in Russian).
  20. AVIS de l’Agence nationale de sécurité sanitaire de l’alimentation, de l’environnement et du travail relatif à une demande d'avis relatif à l’exposition alimentaire aux nanoparticules de dioxyde de titane. ANSES, 2017. Available at: https://www.anses.fr/fr/system/files/ERCA2017SA0020.pdf (16.01.2017).
  21. Demin V.A., Gmoshinsky I.V., Demin V.F., Anciferova A.A., Buzulukov Yu.P., Khotimchenko S.A., Tutelyan V.A. Modeling interorgan distribution and bioaccumulation of engineered nanoparticles (using the example of silver nanoparticles). Nanotechnologies in Russia, 2015, vol. 10, no. 3–4, pp. 288–296. DOI: 10.1134/S1995078015020081
  22. Buzulukov Yu.P., Arianova E.A., Demin V.F., Safenkova I.V., Gmoshinski I.V., Tutelyan V.A. Bioaccumulation of silver and gold nanoparticles in organs and tissues of rats studied by neutron activation analysis. Biology Bulletin, 2014, vol. 41, no. 3, pp. 255–263. DOI: 10.1134/S1062359014030042
  23. Van der Zande M., Vandebriel R.J., Doren E.V., Kramer E., Rivera Z.H., Serrano-Rojero P.S. [et al.]. Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure. ACS Nano, 2012, vol. 6, no. 8, pp. 7427–7442. DOI: 10.1021/nn302649p
  24. Melnik E.A., Buzulukov Yu.P., Demin V.F., Demin V.A., Gmoshinski I.V., Tyshko N.V., Tutelyan V.A. Transfer of silver nanoparticles through the placenta and breast milk during in vivo experiments on rat. Acta Naturae, 2013, vol. 5, no. 3 (18), pp. 48–56.
  25. Kim Y.S., Kim J.S., Cho H.S., Rha D.S., Kim J.M., Park J.D. [et al.]. Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhal. Toxicol, 2008, vol. 20, no. 6, pp. 575– 583. DOI: 10.1080/08958370701874663
  26. Park E.J., Bae E., Yi J., Kim Y., Choi K., Lee S.H. [et al.]. Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environ. Toxicol. Pharmacol, 2010, vol. 30, no. 2, pp. 162–168. DOI: 10.1016/j.etap.2010.05.004
  27. Shumakova A.A., Smirnova V.V., Tananova O.N., Trushina E.N., Kravchenko L.V., Aksenov I.V. [et al.]. Toxico-logical sanitary characterization of silver nanoparticles introduced in gastrointestinal tract of rats. Voprosy pitaniya, 2011, vol. 80, no. 6, pp. 9–18 (in Russian).
  28. Khodykina N.V., Gorshenin A.V., Klauchek V.V., Pocheptsov A.Ya., Sroslov M.S., Tochilkina L.P. [et al.]. Eksper-imental'noe izuchenie khronicheskoi peroral'noi toksichnosti sfericheskikh nefunktsionalizirovannykh nanochastits serebra [Ex-perimental study of chronic oral toxicity of spherical nonfunctionalized silver nanoparticles]. Nanotoksikologiya: dostizheniya, problemy, perspektivy: materialy nauchnyi konferentsii. Volgograd, Stanitsa 2 Publ., 2014, pp. 65–66 (in Russian).
  29. Zaitseva N.V., Zemlyanova M.A., Zvezdin V.N., Dovbysh A.A., Akafyeva T.I., Gmoshinski I.V., Khotimchenko S.A. Toxicological evaluation of nano-sized colloidal silver in experiments on mice. behavioral reactions, morphology of internals. Health Risk Analysis, 2015, no. 2, pp. 68–81. DOI: 10.21668/health.risk/2015.2.09.eng (in Russian).
  30. Shumakova A.A., Shipelin V.A., Efimochkina N.R., Minaeva L.P., Bykova I.B., Markova Yu.M. [et al.]. Toxicological evaluation of colloidal nano-sized silver stabilized polyvinylpyrrolidone. IV. Influence on intestinal microbiota, immune indexes. Voprosy pitaniya, 2016, vol. 85, no. 3, pp. 27–35 (in Russian).
  31. Shipelin V.A., Shumakova A.A., Masyutin A.G., Chernov A.I., Sidorova Yu.S., Gmoshinski I.V., Khotimchenko S.A. Influence of orally introduced silver nanoparticles on content of essential and toxic trace elements in organism. Nanotechnologies in Russia, 2016, vol. 11, no. 9–10, pp. 646–652. DOI: 10.1134/S199507801705010X (in Russian).
  32. Zaytseva N.V., Zemlyanova M.A., Zvezdin V.N., Dovbysh A.A., Gmoshinskiy I.V., Khotimchenko S.A. [et al.]. Tox-icological evaluation of nanosized colloidal silver, stabilized with polyvinylpyrrolidone, in 92-day experiment on rats. II. Internal organs morphology. Voprosy pitaniya, 2016, vol. 85, no. 1, pp. 47–55 (in Russian).
  33. Smirnova E.A., Gusev A.A., Zaitseva O.N., Lazareva E.M., Onishchenko G.E., Kuznetsova E.V., [et al.]. Multi-walled сarbon nanotubes penetrate into plant cells and affect the growth of onobrychis arenaria seedlings. Acta Naturae, 2011, vol. 3, no. 1, pp. 99–106 (in Russian).
  34. Mukherjee A., Majumdar S., Servin A.D., Pagano L., Dhankher O.P., White J.P. Carbon nanomaterials in agriculture: a critical review. Front.Plant Science, 2016, vol. 7, pp. 172. DOI: 10.3389/fpls.2016.00172
  35. Vasyukova I.A., Gribanovskii S.L., Gusev A.A., Ubogov A.Y., Khaliullin T.O., Fatkhutdinova L.M., Tkachev A.G. Assessment of reproductive toxicity of multiwalled carbon nanotubes and their putative effects on population ecology of mouselike rodents]. Nanotechnologies in Russia, 2015, vol. 10, no. 5–6, pp. 458–467 (in Russian).
  36. Kavoosi G., Dadfar S.M., Dadfar S.M., Ahmadi F., Niakosari M. Investigation of gelatin/multi-walled carbon nanotube nanocomposite films as packaging materials. Food Sci. Nutr., 2014, vol. 2, no. 1, pp. 65–73. DOI: 10.1002/fsn3.81
  37. Khripach L.V., Rakhmanin Iu.A., Mikhajlova R.I., Knyazeva T.D., Koganova Z.I., Zheleznyak E.V., Savostikova O.N., Alekseeva A.V., Ryzhova I.N., Kruglova E.V., Revazova T.L. Biochemical effects of chronic peroral administration of carbon nanotubes and activated charcoal in drinking water in rats. Gigiena i sanitariya, 2014, no. 5, pp. 36–42 (in Russian).
Received: 
18.10.2018
Accepted: 
15.11.2018
Published: 
30.12.2018

You are here