Methodical and practical aspects related to total mercury determination in whole blood, urine and hair with mass-spectrometry with inductively coupled plasma

View or download the full article: 
UDC: 
543.064: 616-074
Authors: 

T.S. Ulanova1,2, E.V. Stenno1, G.A. Veikhman1,3, A.V. Nedoshitova1

Organization: 

1 Federal Scientific Centerfor Medical and Preventive Health Risk Management Technologies, 82 Monastyrskaya Str., Perm, 614045, Russian Federation
2 Perm National Research Polytechnic University, 29 Komsomolskiy avenue, Perm, 614990, Russian Federation
3Perm State Pharmaceutical Academy, 2 Polevaya Str., Perm, 614081, Russian Federation

Abstract: 

A precise, selective, and sufficiently sensitive quantitative procedure for determining chemicals contents in environmental objects and a human body is often a key to correct health risk assessment.

The authors describe optimized conditions for analyzing whole blood, urine, and hair samples used for determining total mercury contents with mass-spectrometry with inductively coupled plasma (sampling, samples storage, preparations to analysis, instrumental settings of a device, analysis conditions).

We quantitatively determined mercury in blood, urine, and hair samples with Agilent 7500cx mass spectrometer with octopole reaction/collision cell (Agilent Technologies, USA). To prepare for whole blood samples analysis, we applied acid dilution in concentrated nitric acid with consequent centrifuging. Urine samples were directly analyzed after 1/10 (V/V) dilution with 1 % nitric acid solution. The suggested conditions of conventional biological media analysis applied in total mercury determining with mass spectrometry with inductively coupled plasma allow to determine the element in blood within 0.5–100 µg/l with measurement error being equal to 29.4 %; in urine, within 0.4–100 µg/l with measurement error being equal to 24.2 %; in hair, within 0.001–100 µg/l with measurement error being equal to 22.4 %. When validating the procedure, we found the following limits of detection (LOD): 0.0015 µg/l for blood; 0.012 µg/l, for urine; and 0.003 µg/l, for hair.

Correctness of the results was confirmed by examination of standards blood samples SERONORM (Sero AS, Norway) blood L1 (LOT 1103128), L2 (LOT 1103129), L3 (LOT 1112691), urine samples SeronormTM (Sero AS, Norway) urine (LOT 0511545), and hair samples Reference Material in Human Hair (IAEA-086, Vienna, Austria).

Total mercury contents in children's blood was determine within 0.02–1.2 µg/l; within 0.45–0.8 µg/l in urine. Contents in urine taken from exposed adults amounted to 0.65–8.2 µg/l, and to 0.29–0.49 µg/l in hair.

Keywords: 
: mercury, quantitative determination, mass spectrometry, inductively coupled plasma, whole blood, urine, hair, acid dilution
Ulanova T.S., Stenno E.V., Veikhman G.A., Nedoshitova A.V. Methodical and practical aspects related to total mercury determination in whole blood, urine and hair with mass-spectrometry with inductively coupled plasma. Health Risk Analysis, 2018, no. 2, pp. 119–128. DOI: 10.21668/health.risk/2018.2.14.eng
References: 
  1. Biomonitoring cheloveka: fakty i tsifry [Human biomonitoring: facts and figures]. Kopengagen, Regional office for Europe Publ., 2015. Available at: http://www.euro.who.int/en/health-topics/environment-and-health/health-i... (18.01.2018).
  2. Skal'nyi A.V., Rudakov I.A. Bioelementy v meditsine [Bioelements in medicine]. Moscow, Mir Publ., 2004, 272 p. (in Russian).
  3. Tits N.U. Klinicheskoe rukovodstvo po laboratornym testam [Clinical guide on laboratory tests]. Moscow, Yunimed-press Publ., 2003, 960 p. (in Russian).
  4. Toksikologicheskaya khimiya. Metabolizm i analiz toksikantov [Toxicological chemistry. Metabolism and analysis of toxicants]. In: N.I. Kaletina ed. Moscow, Izdatel'skaya gruppa GEOTAR-Media Publ., 2008, 1016 p. (in Russian).
  5. Programma Organizatsii Ob"edinennykh Natsii po okruzhayushchei srede. UNEP (DTIE) /Hg/INC.2/6,2/9. 22 October 2010 [The United Nations Environmental Program. UNEP (DTIE) /Hg/INC.2/6,2/9. 22 October 2010]. DocPlayer.ru. Available at: http: //docplayer.ru/72077878-Programma organizacii-obedinennyh-naciy-po-okru-zhayushchey-srede.html (18.01.2018) (in Russian).
  6. Schulz Ch., Angerer J., Ewers U., Heudorf U., Wilhelm M. Revised and new reference values for environmental pollutants in urine or blood of children in Germany derived from the German Environmental Survey on Children 2003–2006 (GerESIV). Int. J. Hyg. Environ. Health, 2009, vol. 212, pp. 637–647.
  7. Trace elements in human biological material. ALS Scandinavia. Available at: https://www.alsglobal.se/mediase/pdf/reference_data_biomonitoring_120710... (18.01.2018).
  8. Goulle J.P., Mahieu L., Castermant J. Metal and metalloid multi-elementary ICP-MS validation in whole blood, plasma, urine and hair: Reference values. Forensic Science International, 2005, vol. 153, pp. 39–44.
  9. Karamova L.M., Larionova T.K., Basharova G.R. Kriterii ekologicheskoi bezopasnosti tyazhelykh metallov v krovi cheloveka [Criteria of ecologic safety for serum levels of heavy metals in humans]. Meditsina truda i promyshlennaya ekologiya, 2010, no. 6, pp. 21–23 (in Russian).
  10. Ivanenko N.B., Ivanenko A.A., Nosova E.B. Opredelenie toksicheskikh i fonovykh soderzhanii rtuti v krovi atomno-absorbtsionnym metodom s elektrotermicheskoi atomizatsiei i Zeemanovskoi modulyatsionnoi polyarizatsionnoi korrektsiei fona [Determination of toxic and background mercury content in blood by graphite furnace atomic absorption spectrometry with Zeeman high-frequency polarization modulation background correction]. Vestnik Sankt-Peterburgskogo universiteta. Fizika i khimiya, 2010, no. 4, pp. 97–104 (in Russian).
  11. Pogarev S.E., Ryzhov V.V., Dreval' T.V., Mash'yanov N.R. Ispol'zovanie Zeemanovskogo spektrometra dlya opredeleniya rtuti v moche [Use of Zeemann's spectrometer to determine mercury in urine]. Ekologicheskaya khimiya, 1994, vol. 3, pp. 227 (in Russian).
  12. Ivanenko N.B., Ganeev A.A., Solov'ev N.D. Opredelenie mikroelementov v biologicheskikh zhidkostyakh (Obzor) [Determination of trace elements in biological fluids]. Zhurnal analiticheskoi khimii, 2011, vol. 66, no. 9, pp. 900–915 (in Russian).
  13. Ivanenko N.B., Solov'ev N.D., Ivanenko A.A., Moskvin L.N. Opredelenie khimicheskikh form mikroelementov v biologicheskikh ob"ektakh [Trace element speciation analysis of biological media]. Analitika i kontrol', 2012, vol. 16, no. 2, pp. 108–133 (in Russian).
  14. Egorov A.I., Il'chenko I.N., Lyapunov S.M., Marochkina E.B., Okina O.I., Ermolaev B.V., Karamysheva T.V. Primenenie standartizovannoi metodologii biomonitoringa cheloveka dlya otsenki prenatal'noi ekspozitsii k rtuti [Application of a standardized human biomonitoring methodology to assess prenatal exposure to mercury]. Gigiena i sanitariya, 2014, vol. 93, no. 5, pp. 10–18 (in Russian).
  15. Zibarev E.V., Chashchin M.V., Nikonova S.M., Kusraeva Z.S., Kuz'min A.V., Ellingsen D.G., Thomassen Y. Otsenka biomarkerov ekspozitsii k svarochnomu aerozolyu [Evaluating biomarkers of exposure to electric welding aerosol]. Meditsina truda i promyshlennaya ekologiya, 2010, no. 4, pp. 14–17 (in Russian).
  16. Results of the Canadian Health Measures Survey Cycle 1 (2007–2009). Government of Canada. Available at: https://www.canada.ca/en/health-canada/services/environmental-workplace-... (18.01.2018).
  17. Heitland P., Koster H.D. Biomonitoring of 37 trace elements in blood samples from inhabitants of northern Germany by ICP – MS. J. of Trace Elements in Medicine and Biology, 2006, vol. 20, pp. 253–262.
Received: 
26.02.2018
Accepted: 
17.06.2018
Published: 
30.06.2018

You are here