Risks of age related macular degeneration and led lighting

View or download the full article: 
UDC: 
614/5: 644.36
Authors: 

V.A. Kaptsov1, V.N. Deinego2

Organization: 

1All-Russian Research Institute of Railway Hygiene, 1 Pakgauznoe Shosse Str., Bldg. 1, Moscow, 125438, Russian Federation
2Scientific-Production Company «ELTAN LTD», 2 Zavodskoy avenue, Fryazino, 141190, Russian Federation

Abstract: 

Spectral structure of environmental light can have significant influence on risks of various eye diseases which can evolve quite early. The paper dwells on how age-related macular degeneration evolves and on a part which eye age pigment plays in the process. We discuss predictive models for age pigment accumulation and methodology of their creation. We created a predictive mathematical model for accumulated A2E age pigment quantity allowing for LED lighting peculiarities and its age-related perception. The model encompasses active oxygen forms generation evolving due to decrease in antioxidant cellular protection efficiency in a lighting environment with a higher blue light dose. It is shown that superoxide dismutase, catalase and glutathione peroxidase 1 (GRX 1) efficiency within 445 (plus minus 10 nanometers) range drops substantially in blue light; it increases risks of lower cellular resistance to effects exerted by non-compensated active oxygen forms. These processes which are rather long-term can lead to early age-related macular degeneration. Mathematical calculations prove that in the nearest future a share of patients aged 30–40 who suffer from age-related macular degeneration will grow drastically; it will eventually lead to an increased number of disabled people aged 50–60 whose disability is caused by eyesight disorders. It is shown that if we fail to discover any mechanisms aimed at lowering risks of early age-related macular degeneration evolvement in the nearest future, total costs required for solving eyesight disorders issue will grow substantially. Thus, in 2012 about 140 billion dollars were spent on the eyesight disorders issue all over the world; the sum is likely to reach 377 billion dollars in 2050.

Keywords: 
age-related macular degeneration, age pigment, antioxidant cellular protection, eye pathology prevention, lighting environment, LED lighting, blue light
Kaptsov V.A., Deinego V.N. Risks of age related macular degeneration and led lighting. Health Risk Analysis, 2017, no. 4, pp. 129–146. DOI: 10.21668/health.risk/2017.4.14.eng
References: 
  1. Basharina O.V., Artyukhov V.G. Analiz fotoindutsirovannykh strukturno-funktsional'nykh izmenenii superoksiddismutazy [Analysis of photo-induced structural-functional changes in superoxide dismutase]. I Vserossiiskaya konferentsiya fotobiologov: tezisy doklada na konferentsii. Pushchino, ONTI, Publ., 1996, pp. 62–63 (in Russian).
  2. Bolbas Z.V., Vasilevskaya N.A., Chikun E.A. Vozrastnaya makulyarnaya degeneratsiya: faktor rosta en-doteliya sosudov VEGF, shaperon RPE65 i retseptory semeistva ppar kak perspektivnye misheni lekarstvennoi terapii [Age-related macular involution: vascular endothelium growth factor VEGF, chaperone RPE65 and recep-tors of PPAR family as perspective targets of pharmacological therapy]. Internet sessiya: vserossiiskaya obra-zovatel'naya internet-programma dlya vrachei, 2011. Available at: : https://internist.ru/publications/detail/vozrastnaya-makulyarnaya-degene... (18.04.2017) (in Russian).
  3. Vyazov E.V., Shalygo N.V. Vliyanie spektral'nogo sostava svetodiodnogo izlucheniya na aktivnost' anti-oksidantnykh fermentov i nakopleniya zashchitnykh belkov v rasteniyakh ogurtsa [Effect of the spectral composition of LED lighting on the activity of antioxidant enzymes and the defensive protein content in cucumber plants (Cucumis sativus L.) ]. Doklady natsional'noi akademii nauk Belorusi, 2015, vol. 59, no. 2, pp. 87–92 (in Russian).
  4. Zak P.P., Ostrovskii M.A. Potentsial'naya opasnost' osveshcheniya svetodiodami dlya glaz detei i po-drostkov [Potential danger of light emitting diode illumination to the eye, in children and teenagers]. Svetotekhnika, 2012, no. 3, pp. 4–6 (in Russian).
  5. Kaptsov V.A., Deinego V.N. Sinii svet svetodiodov – novaya gigienicheskaya problema [Blue LED light as a new hygienic problem]. Health Risk Analysis, 2016, no. 1, pp. 15–25. DOI: 10.21668/health.risk/2016.1.02.eng (in Russian).
  6. Ostrovskii M.A. Fotobiologicheskii paradoks zreniya [Photo-biological eyesight paradox]. Available at: http: //www.library.biophys.msu.ru/PDF/3353.pdf (17.08.2017) (in Russian).
  7. Deinego V.N., Kaptsov V.A., Balashevich L.I., Svetlova O.V., Makarov F.N., Guseva M.G., Koshits I.N. Profilaktika glaznykh zabolevanii u detei i podrostkov v uchebnykh pomeshcheniyakh so svetodiodnymi istochni-kami sveta pervogo pokoleniya [Prevention of ocular diseases in children and teenager in classrooms with led light sources of the first generation]. Rossiiskaya detskaya oftal'mologiya, 2016, no. 2, pp. 57–72 (in Russian).
  8. Smagin V.A. Gerontologiya i teoriya nadezhnosti o dolgovechnosti cheloveka [Gerontology and reliability theory on human durability]. Kompaniya otkrytykh sistem. Available at: http://sir35.narod.ru/Cmagin/K015/Ger.htm (12.05.2017) (in Russian).
  9. Sokolov A.V. Izuchenie vozdeistviya produktov zritel'nogo tsikla na bisloinye lipidnye membrany: dis. … kand. biol. nauk: 03.00.02 [Research on effects exerted by visual cycle products on bi-layer lipid membranes: The-sis … Candidate of Biological Sciences: 03.00.02]. Moscow, 2009, 143 p. (in Russian).
  10. Marie M., Barrau C., Gondouin P., Villette Th., Cohen-Tannoudji D., Sahel J., Picaud S. Blue light de-creases oxidative stress defenses in an in vitro model of AMD. Available at: https://www.google.ru/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&ved=0ahUK... (18.06.2017).
  11. Boulton M., Rozanowska M., Rozanowski B. Retinal photodamage. Journal of Photochemistry and Photobiology, 2001, vol. 64, no. 2–3, pp. 144–161.
  12. Delori F.C., Goger D.G., Dorey C.K. Age-Related Accumulation and Spatial Distribution of Lipofuscin in RPE of Normal Subjects. Investigative Ophthalmology & Visual Science, 2001, vol. 42, no. 8, pp. 1855–1866.
  13. Taylor H.R., West S.K., Rosenthal F.S., Munoz B., Newland H.S., Abbey H., Emmett E.A. Effect of Ul-traviolet Radiation on Cataract Formation. The New England Journal of Medicine, 1988, vol. 319, pp. 1429–1433. DOI: 10.1056/NEJM198812013192201
  14. Ersoy L., Ristau T., Hahn M., Karlstetter M., Langmann T., Droge K., Caramoy A., den Hollander A.I., Faus S. Genetic and Environmental Risk Factors for Age-Related Macular Degeneration in Persons 90 Years and Older. Investigative Ophthalmology & Visual Science, 2014, vol. 55, no. 3, pp. 1842–1847. DOI: 10.1167/iovs.13-13420.
  15. Hassan H.M., Fridovich I. Regulation of the synthesis of superoxide dismutase in Escherichia coli. In-duction by methyl viologen. J. Biol. Chem., 1977, vol. 252, no. 21, pp. 7667–7672.
  16. Newsome D.A., Dobard E.P., Liles M.R., Oliver P.D. Human retinal pigment epithelium contains two dis-tinct species of superoxide dismutase. Investigative Ophthalmology & Visual Science, 1990, vol. 31, pp. 2508–2513.
  17. Guo-Yuan Sui, Guang-Cong Liu, Guang-Ying Liu, Yan-Yan Gao, Yan Deng, Wen-Ying Wang, Shu-Hui Tong, Lie Wang. Is sunlight exposure a risk factor for age-related macular degeneration? A systematic review and meta-analysis. British Journal of Ophthalmology, 2013, vol. 97, no. 4. Available at: http://bjo.bmj.com/content/97/4/389 (07.07.2017).
  18. Kitchel E., Ed M. The Effects of Blue Light on Ocular Health. Texas School for the Blind and Visually Impaired. Available at: http: //www.tsbvi.edu/instructional-resources/62-family-engagement/3654-effects-... (26.06.2017).
  19. Ablonczy Z., Higbee D., Anderson D.M., Dahrouj M., Grey A.C., Gutierrez D., Koutalos Y., Schey K.L., Hanneken A., Crouch R.K. Lack of Correlation Between the Spatial Distribution of A2E and Lipofuscin Flu-orescence in the Human Retinal Pigment Epithelium. Investigative Ophthalmology & Visual Science, 2013, vol. 54, no. 8, pp. 5535–5542.
  20. Lamb L.E., Simon J.D.. A2E: A Component of Ocular Lipofuscin. Photochemistry and Photobiology, 2004, vol. 79, no. 2, pp. 127–136.
  21. Behar-Cohen F., Martinsons C., Viénot F., Zissis G., Barlier-Salsi A., Cesarini J.P., Enouf O., Garcia M., Picaud S., Attia D. Light-emitting diodes (LED) for domestic lighting: Any risks for the eye? Prog. Retin. Eye. Res., 2011, vol. 30, no. 4, pp. 239–257. DOI: 10.1016/j.preteyeres.2011.04.002/
  22. Marshall J. The Blue Light Paradox: Problem or Panacea. Mivision: Bringing Optics into Focus, 2017. Available at: https://www.mivision.com.au/the-blue-light-paradox-problem-or-panacea (12.08.2017).
  23. Oliver P.D., Newsom D.A. Mitochondrial Superoxide Dismutase in Mature and Developing Human Retinal Pigment Epithelium. Investigative Ophthalmology & Visual Science, 1992, vol. 33, no. 6, pp. 1909–1918.
  24. Jung S.-K., Lee J.H., Kakizaki H., Jee D. Prevalence of Myopia and its Association with Body Stature and Educational Level in 19-Year-Old Male Conscripts in Seoul, South Korea. Invest. Ophthalmol. Vis. Sci., 2012, vol. 53, no. 9, pp. 5579–5583. DOI: 10.1167/iovs.12-10106.
  25. Greenberg J.P., Duncker T., Woods R.L., Smith R.T., Sparrow J.R., Delori F.C. Quantitative Fundus Autofluorescence in Healthy Eyes. Investigative Ophthalmology & Visual Science, 2013, vol. 54, no. 8, pp. 5684–5693. DOI: 10.1167/iovs.13-12445
  26. Retina is Vulnerable to Effects of Blue Light. Science Based Health. Available at:http://www.science-basedhealth.com/EUREYE-Study-Blue-Light-Exposure-Low-... (07.07.2017).
  27. Justilien V., Pang J.J., Renganathan K., Zhan X., Crabb J.W., Kim S.R., [et al]. SOD2 knockdown mouse model of early AMD. Investigative Ophthalmology & Visual Science, 2007, vol. 48, pp. 4407–4420.
  28. Kasahara E., Lin L.R., Ho Y.S., Reddy V.N. SOD-2 protects against oxidation-induced apoptosis in mouse retinal pigment epithelium: implications for age-related macular degeneration. Investigative Ophthalmology & Visual Science, 2005, vol. 46, pp. 3426–3434.
  29. Fletcher A.E. [et al]. Sunlight exposure, antioxidants, and age-related macular degeneration. Archives Ophthalmology, 2008, vol. 126, pp. 1396–1403.
  30. McCord J.M., Beauchamp C.O., Goscin S., Misra H.P., Fridovich I. Superoxide and superoxide dismu-tase. Oxidases and Related Redox Systems; In: T.E. King, H.S. Mason, M. Morrison, eds. Baltimore: University Park Press, 1973, vol. 1, pp. 51–76.
  31. Villette Th., Lawrenson J. BLUE LIGHT: A review of the evidence on the potential benefits and harms of blue-filtering lenses. London, 2016. Available at: https://www.google.ru/url?sa=t&rct=j&q=&esrc=s&source=-web&cd=1&ved=0ahU... (10.07.2017).
  32. Wing G.L., Blanchard G.C., Weiter J.J. The topography and age relationship of lipofuscin concentration in the retinal pigment epithelium. Invest. Ophthalmol. Vis. Sci., 1978, vol. 17, no. 7, pp. 601–607.
Received: 
31.08.2017
Accepted: 
15.12.2017
Published: 
30.12.2017

You are here