Disorders in melanopsin effect of pupil constriction as a risk factor causing eye diseases

View or download the full article: 
UDC: 
614/5:644.36
Authors: 

V.A. Kaptsov 1, V.N.Dainego2

Organization: 

1 All-Russian Research Institute of Railway Hygiene, 1 Pakgauznoe Shosse Str., Bldg. 1, Moscow, 125438, Russian Faderation
2 Scientific-production company «ELTAN LTD», 2 Zavodskoy avenue, Fryazino, 141190, Russian Faderation

Abstract: 

Risks of eye damage and eyesight deterioration to a great extent depend on how efficient a biomechanical eye system is under energy-saving lighting conditions. The system's efficiency is determined by its adequacy in managing pupils and ciliary muscle.

We analyzed mathematical models describing changes in pupil's diameter which were determined by light-technical parameters of illumination environment (luminance level and brightness). We highlighted the importance of ganglionic cells and the role they play in managing pupil's diameter (miosis) when they are exposed to blue light within 480 nm spectrum. Basing on the assessment of a pupil's constriction under exposure to various light stimuli (blue, red, and green ones) we worked out a melanopsin effect concept of a pupil's retention at miosis and showed that it could be a diagnostic sign of some diseases (age-related direct retinopathy, pancreatic diabetes) under exposure to a blue light impulse with a certain wave length. Under exposure to blue light within 480 nm spectrum ganglionic cells form a managing signal for a sphincter muscle of a pupil and ciliary muscle which provides accommodation (as per Helmholtz) and regulates aqueous humor flow in ciliary channel.

All modern energy-saving light sources have a low energy level at wave length equal to 480 nm due to gap in their spectrum in comparison with sunlight spectrum with the same light temperature and luminance level. Inadequate management of pupil's diameter under artificial lighting conditions leads to melanopsin effect disorders and causes disharmony in managing aqueous humor outflow. All the above-stated factors under long-term visual load cause eye diseases risks in modern illumination environment.

We detected that contemporary mathematic models describing pupil's diameter fluctuations needed to be refined allowing for new knowledge on functional peculiarities of retina cells and energy-saving light sources spectrum.

Keywords: 
biomechanical eye system, LED illumination, blue light, pupil constriction, ganglionic cells, melanopsin effect, myopia evolvement risk
Kaptsov V.A., Dainego V.N. Disorders in melanopsin effect of pupil constriction as a risk factor causing eye diseases. Health Risk Analysis, 2017, no. 1, pp. 132–148. DOI: 10.21668/health.risk/2017.1.15.eng
References: 
  1. Avetisov S.E., Sheludchenko V.M. Nuzhno li nam super-zrenie? Aberratsii glaza [Do we need super sight? Eye aberration]. Klinicheskaya fiziologiya glaza, 2006, pp. 488–501. Available at: http://miroft.org.ua/ori-gunalarts/315.html (13.10.2016).
  2. Bakutkin V.V., Kirichuk V.F., Kuznetsova E.V. Vliyanie dinamicheskoi elektroneirostimulyatsii na ak-komodatsionnye sposobnosti glaza cheloveka [Influence exerted by electrical neurostimulation on accommodation capacity of a human eye]. Problemy opticheskoi fiziki i biofotoniki: materialy XIII Mezhdunar. Molodezhnoi nauchnoi shkoly po optike, lazernoi fizike i biofotonike [Issues of optical physics and biophotonics: materials of XIII International Youth scientific school on optics, laser physics and biophotonics]. Saratov, Novyi veter Publ., 2009, 219 p. (in Russian).
  3. Berman S.M., Klier R.D. Nedavno otkrytyi fotoretseptor cheloveka i predydushchie issledovaniya v oblasti zreniya. Svetotekhnika, 2008, no. 3, pp. 49–53.
  4. GOST IEC/TR 60825-9-2013. Bezopasnost' lazernoi apparatury. Chast' 9. Kompilyatsiya maksimal'no dopustimoi ekspozitsii nekogerentnogo opticheskogo izlucheniya [State Standard IEC/TR 60825-9-2013. Laser equipment safety. Part 9. Compilation of maximum allowable exposure to incoherent optical radiation]. Moscow, Standartinform Publ., 2014, 36 p. Available at: http://gostpdf.ru/cont/files/60825-9-2013/gost-60825-9-2013.13333.pdf (02.10.2016).
  5. GOST R MEK 62471-2013. Lampy i lampovye sistemy. Svetobiologicheskaya bezopasnost' [Lamps and lamp systems. Light-biological safety]. Available at: http://docs.cntd.ru/document/1200104817 (10.10.2016).
  6. Deinego V.N., Kaptsov V.A. Svet energosberegayushchikh i svetodiodnykh lamp i zdorov'e cheloveka [Energy saving and led lamp lighting and human health]. Gigiena i sanitariya, 2013, no. 6, pp. 81–84 (in Russian).
  7. Dorosheva E.A. Evolyutsionnyi podkhod k voprosam formirovaniya blizorukosti: perestroika zritel'nogo analizatora kak adaptatsiya k sotsiokul'turnym usloviyam [Evolutionary approach to the formation of myopia: the restructuring of the visual analyzer as an adaptation to the social and cultural conditions]. Eksperimental'naya psikhologiya, 2014, vol. 7, no. 3, pp. 83–96 (in Russian).
  8. Osiko M.V., Gizinger O.A., Telesheva L.F., Dolgushin I.I., Ogneva O.I., Fedosov A.A., Kudryashov A.V., Vakhitov M.G., Kalinina A.S. Issledovanie effektivnosti i bezopasnosti dlya zdorov'ya svetodiodnykh istochnikov sveta [Study of led light source effectiveness and health safety]. Sovremennye problemy nauki i obrazovaniya, 2013, no. 6, pp. 566 (in Russian).
  9. Koshits I.N., Svetlova O.V., Makarov F.N., Shilkin G.A. Klassifikatsiya ispolnitel'nykh mekhanizmov «predmetnoi» akkomodatsii u cheloveka [Classification of actuating mechanisms of objective accommodation in human being]. Rossiiskaya detskaya oftal'mologiya, 2012, no. 4, pp. 28–36 (in Russian).
  10. Klinicheskaya anatomiya organa zreniya: Chasti tsiliarnogo tela [Clinical anatomy of sight organ: Ciliary body parts]. StudFiles: failovyi arkhiv studentov. Available at: http://www.studfiles.ru/preview/2243441/page:7/ (15.10.2016).
  11. Meshkov V.V. Osnova svetotekhniki [Basics of lighting technology]. Moscow, Leningrad, Gosener-goizdat, 1961, 416 p. (in Russian).
  12. Nikolaenko G.A. Tsiliarnoe telo glaza cheloveka v ontogeneze: dis… kand. med. nauk. [Ciliary body of a human eye in ontogenesis: thesis… candidate of medical sciences]. Vladivostok, Vladivostokskii Gosudarstven-nyi Meditsinskii Universitet Publ., 2005, 140 p. (in Russian).
  13. Penegin N.I. Vliyanie yarkosti i razmera polya zreniya na diametr zrachka [Influence exerted by visual field brightness and size on pupil diameter]. Trududy I konf. po fiziol. Optike [Materials of the I Conference on physiological optics]. Moscow, Leningrad, 1936, 396 p. (in Russian).
  14. Pershin B.S. Gidrodinamicheskii balans glaznogo yabloka pri intravitreal'nom vvedenii dopolnitel'nogo ob"ema zhidkosti (eksperimental'no-klinicheskoe issledovanie): dis. ... kand. med. nauk. [Eye ball hydrodynamic balance at intravitreal injection of additional fluid volume (experimental clinical research): thesis… candidate of medical sciences]. Moscow, 2012, 124 p. (in Russian).
  15. Deinego V.N., Kaptsov V.A., Balashevich L.I., Svetlova O.V., Makarov F.N., Guseva M.G., Koshits I.N. Profilaktika glaznykh zabolevanii u detei i podrostkov v uchebnykh pomeshcheniyakh so svetodiodnymi is-tochnikami sveta pervogo pokoleniya [Prevention of ocular diseases in children and teenager in classrooms with led light sources of the first generation]. Rossiiskaya detskaya oftal'mologiya, 2016, no. 2, pp. 57–72 (in Russian).
  16. Reaktsiya zrachkov pri ustanovke glaz na blizkoe rasstoyanie [Pupils' reaction at setting eyes for a close distance]. Sovremennaya oftal'mologiya: informatsionnyi portal. Available at: http://zrenue.com/nejrooftal-mologija/51-normalnye-reakcii-suzhenija-zra... (15.10.2016).
  17. Svetlova O.V., Koshits I.N. Vzaimodeistvie osnovnykh putei ottoka vnutriglaznoi zhidkosti s mekha-nizmom akkomodatsii: Uchebnoe posobie [Interaction between basic ways of intraocular fluid outflow and accommodation mechanism: tutorial]. Izdat. Dom Spb.MAPO, 2002, 50 p. (in Russian).
  18. Svetlova O.V., Koshits I.N., Drozdova G.A. Vzaimodeistvie mekhanizmov ottoka vodyanistoi vlagi i akkomodatsii pri miopii i glaukome. Patologicheskaya fiziologiya glaza: monografiya [Interaction between me-chanisms of aqueous humor outflow and accommodation at myopia and glaucoma. Eye physiopathology: mono-graph]. 2-e izd, ispr. i dop. St. Petersburg, SZGMU im. I.I. Mechnikova Publ., 2016, 160 p. (in Russian).
  19. Fedorov S.N., Yartseva N.S., Ismankulov A.O. Refraktsiya i akkomodatsiya. Glaznye bolezni [Refrac-tion and accommodation. Eye diseases]. 2-e izd., pererab. i dop. Moscow, 2005, 440 p. (in Russian).
  20. Khatsevich T.N. Meditsinskie opticheskie pribory: Fiziologicheskaya optika: uchebnoe posobie [Medi-cal optical instruments: Physiological optics: tutorial]. Novosibirsk: SGGA Publ., 1998, part. 1, 98 p. (in Russian).
  21. Tsiliarnoe telo [Ciliary body]. Vse novosti oftal'mologii: natsional'nyi oftal'mologicheskii proekt. Avail-able at: http://www.eyenews.ru/12/13/112 (15.10.2016).
  22. Elektronno-opticheskii preobrazovatel' (EOP) [Electrooptical converter (EOC)]. Available at: http://go-radio.ru/electronno-opticheskiy-preobrazovatel.html (10.10.2016).
  23. Adhikari P., Zele A.J., Feigl B. Post-Illumination Pupil Response. Investigative Ophthalmology & Visual Science, 2015, vol.56, pp. 3838–3849. DOI:10.1167/iovs.14-16233.
  24. Mohan K., Harper M.M., Kecova H., Ye E.A., Lazic T., Sakaguchi D.S., Kardon R.H., Grozdanic S.D. Characterization of structure and function of the mouse retina using pattern electroretinography, pupil light reflex, and optical coherence tomography. Vet Ophthalmol, 2012, vol. 15, no. 2, pp. 94–104. DOI: 10.1111/j.1463-5224.2012.01034.
  25. Chirre E., Prieto P.M., Artal P. Dynamics of the near response under natural viewing conditions with an open-view sensor. Biomed. Opt. Express, 2015, vol. 6, no.10, pp. 4200–4211. DOI: 10.1364/BOE.6.004200
  26. Tsujimura Sei-ichi, Ukai K., Ohama D., Nuruki A., Yunokuchi K. Contribution of human melanopsin retinal ganglion cells to steady-state pupil responses. Proc. R. Soc. B, 2010, vol. 277, pp. 2485–2492. DOI:10.1098/rspb.2010.0330.
  27. Doyle L., Saunders K.J., Little J.-A. Trying to see, failing to focus: near visual impairment in Down syndrome. Scientific Reports, 2016. DOI: 10.1038/srep20444. Available at: http://www.nature.com/articles/srep20444 (15.10.2016).
  28. Lee S., Ishibashi S., Shimomura Y. , Katsuura T. Effect of simultaneous exposure to extremely short pulses of blue and green light on human pupillary constriction. Journal of Physiological Anthropology, 2016, vol.35, pp. 20. DOI: 10.1186/s40101-016-0109-3
  29. Ensuring safety in LED lighting. Electronics Weekly.com, 2012. Available at: http://www.electro-nicsweekly.com/news/products/led/ensuring-safety-in-l... (02.10.2016).
  30. Huang E.C., Barocas V.H. Accommodative microfluctuations and iris contour. Journal of Vision, 2006, vol.6, no. 5, рр. 653–660.
  31. Marshall J. Understanding risks of phototoxicity on the eye. Points de Vue, International Review of Ophthalmic Optics, 2014, no. 71. Available at: http://www.pointsdevue.com/article/understanding-risks-photo-toxicity-eye (10.10.2016).
  32. Maynard M.L., Zele A.J., Feigl B. Melanopsin-Mediated Post-Illumination Pupil Response in Early Age-Related Macular Degeneration. Investigative Ophthalmology & Visual Science October, 2015, vol.56, pp. 6906–6913. DOI:10.1167/iovs.15-17357.
  33. McDougal D.H., Gamlin P.D.R. Pupillary Control Pathways. The Senses: A Comprehensive Reference, 2008, vol. 1, pp. 521–536.
  34. Gooley J.J., Mien I.H., Hilaire M.A.St., Yeo S.-C., Chua Chern-Pin E., van Reen E., Hanley C.J., Hull J.T., Czeisler C.A., Lockley S.W. Melanopsin and Rod–Cone Photoreceptors Play Different Roles in Mediating Pupillary Light Responses during Exposure to Continuous Light in Humans Меланопсин и Род-Cone Humans. Journal of Neuroscience, 2012, vol. 32, no. 41, pp. 14242–14253. DOI: 10.1523/JNEUROSCI.1321-12.2012.
  35. Morgan I.G., Ohno-Matsui K., Saw S.M. Myopia. Lancet, 2012, vol.379, no. 9827, pp. 1739–1748.
  36. Pan C.W., Cheng C.Y., Saw S.M., Wang J.J., Wong T.Y. Myopia and age-related cataract: a systematic review and meta-analysis. Am. J. Ophthalmol, 2013, vol. 156, no.5, pp. 1021–1033.
  37. Navarro R., Santamaría J., Bescós J. Accommodation-dependent model of the human eye with aspherics. Journal of the Optical Society of America A, 1985, vol. 2, no. 8, pp. 1273–1280. DOI: 10.1364/JOSAA.2.001273.
  38. Nissen C., Sander B., Lund-Andersen H. The Effect of Pupil Size on Stimulation of the Melanopsin Containing Retinal Ganglion Cells, as Evaluated by Monochromatic Pupillometry. Frontiers in Neurology, 2011, vol. 2, pp. 92. DOI: 10.3389/fneur.2011.00092
  39. Plainis S. Accommodative response: Physiology and Behaviouг. 10th Aegean Summer School in Visnal Optics Hevsnisos Crete 02.10-04.10, 2011. Available at: http://publicana.ru/files/mehanizm-akkommodacii-glaza.pdf (24.10.2016).
  40. Plainis S., Ginis H.S., Pallikaris A. The effect of ocular aberrations on steady-state errors of accommo-dative response. J.Vis., 2005, vol.5, no. 7, pp.466–477.
  41. Jung S.K., Lee J.H., Kakizaki H., Jee D. Prevalence of Myopia and its Association with Body Stature and Educational Level in 19-Year-Old Male Conscripts in Seoul, South Korea. Invest Ophthalmol. Vis. Sci., 2012, vol. 53, no. 9, pp. 5579–5583. DOI: 10.1167/iovs.12-10106.
  42. Brainard G.C., Hanifin J.P., Warfield B., Stone M., James M., Ayers M., Kubey A., Byrne B., Rollag M. Short wavelength enrichment of polychromatic light enhances human melatonin suppression potency. J. Pineal. Res., 2015, vol. 58, pp. 352–361.
  43. Sliney D.H. Health and safety implications of new lighting technologies. Light and Engineering, 2010, vol. 18, no. 4, pp.20–22
  44. Tarrant J., Roorda A., Wildsoet C.F. Determining the accommodative response from wavefront aberra-tions. Journal of Vision, 2010, vol. 10, no. 5, pp. 4.
  45. Feigl B.L., Zele A.J., Fader S.M., Howes A.N., Hughes C.E., Jones K.A., Jones R. The post-illumi¬nation pupil response of melanopsin-expressing intrinsically photosensitive retinal ganglion cells in diabetes. Acta Ophthalmol, 2012, vol. 90, no. 3, pp. 230–234. DOI: 10.1111/j.1755-3768.2011.02226.x.
  46. Watson A.B., Yellott J.I. A unified formula for light-adapted pupil size. Journal of Vision, 2012, vol. 12, no. 12, pp. 1–16. DOI:10.1167/12.10.12.

You are here