Impact of silica dioxide nanoparticles on the morphology of internal organs in rats by oral supplementation

View or download the full article: 
UDC: 
615.9, 614.7
Authors: 

N.V. Zaitseva1, M.A. Zemlyanova1,2,4, V.N. Zvezdin1,4, A.A. Dovbysh1, I.V. Gmoshinskiy3, S.A. Khotimchenko3

Organization: 

1 Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, 82 Monastyrskaya Str., Perm, 614045, Russian Federation
2 Perm National Research Polytechnic University, 29 Komsomolskiy Ave., Perm, 614990, Russian Federation
3 Federal research centre of nutrition and biotechnology, 2/14 Ustinskiy Proezd, Moscow, 109240, Russian Federation
4 Perm State National Research University, 15 Bukireva Str., Perm, 614990, Russian Federation

Abstract: 

The object of the study was amorphous silica dioxide (SiO 2 ), which is widely used as a food additive (E551), a subsidiary component in pharmaceutical preparations, perfumery and cosmetic products etc. In the specification of JECFA silica dioxide does not have information about the size of its particles, which allows the use of fine amorphous SiO 2 , obtained by gas phase hydrolysis of tetrachlorosilane as a food additive. This material, known as the "Aerosil", is characterized by the size of the specific surface area of 300–380 m 2 /g and the size of its relatively weakly agglomerated particles of 6–30 nm, i.e., it is a nanomaterial. In the biological model the morphological changes in organs and tissue systems on oral supplementation of nanoscale particles of silica dioxide were studied. Wistar male rats were given nanosized silica dioxide with specific surface area of 300 m 2 /g and primary nanoparticle size on the basis of data of electrical, atomic-powered microscopy, and dynamic light scattering in the range of 20–60 nm during 92 days. Light microscopic morphological examination of organs of rats showed a relatively mild inflammation in the structure of parenchymal organs (liver, kidney), not showing a certain dose-dependent nanoparticles. The most pronounced changes were in ileum morphology, consisting of a massive lymph macrophage and eosinophil infiltration of villi, without any apparent violation of their epithelial layer structure, which indirectly indicates the absence of violations of the barrier function of the intestinal epithelium. At the maximum dose of 100 mg/kg bw, the increased immune response was the most significant in the wall of the ileum. The results indicate the potential risks to human health when using SiO 2 having a specific surface area of 300 m 2 /g or higher in the composition of food products as a food additive.

Keywords: 
nanoparticles, silica dioxide, morphological studies, oral supplementation, subacute toxicity, health risks
Zaitseva N.V., Zemlyanova M.A., Zvezdin V.N., Dovbysh A.A., Gmoshinskiy I.V., Khotimchenko S.A. Impact of silica dioxide nanoparticles on the morphology of internal organs in rats by oral supplementation. Health Risk Analysis, 2016, no. 4, pp. 80–94. DOI: 10.21668/health.risk/2016.4.10.eng
References: 
  1. Merkulov G.A. Kurs patologogistologicheskoj tehniki [Course of histopathologic technology]. Leningrad: Medicina, Leningradskoe otdelenie, 1969, 424 p. (in Russian).
  2. Onishсhenko G.G., Archakov A.I., Bessonov V.V., Bokit'ko B.G., Gincburg A.L., Gmoshinskij I.V., Grigor'ev A.I., Izmerov N.F., Kirpichnikov M.P., Narodickij B.S., Pokrovskij V.I., Potapov A.I., Rahmanin Ju.A., Tutel'jan V.A., Hotimchenko S.A., Shajtan K.V., Sheveleva S.A. Metodicheskie podhody k ocenke bezopasnosti nanomaterialov [Guidelines for evaluation of the safety of nanomaterials]. Gigiena i sanitarija, 2007, no. 6, pp. 3–10 (in Russian).
  3. Mikroskopicheskaja tehnika: Rukovodstvo [Microscopic technique: Manual]. Ed.: D.S. Sarkisov, J.L. Pe-trov. Moscow, Medicina Publ., 1996, 544 p. (in Russian).
  4. MU 1.2.2520–09. Toksikologo-gigienicheskaja ocenka bezopasnosti nanomaterialov: Metodicheskie ukazanija 1.2.2520–09 [Toxicological and hygienic evaluation of the safety of nanomaterials: Guidelines 1.2.2520–09]. Moscow, Federal'nyj centr gigieny i jepidemiologii Rospotrebnadzora, 2009, 35 p. (in Russian).
  5. Ob utverzhdenii pravil laboratornoj praktiki: Prikaz Minzdravsocrazvitija Rossii № 708N ot 23.08.2010. [On approval of the rules of good laboratory practice: Order of the Health Ministry of Russia from 23.08.2010 № 708N]. Available at: http://www.consultpharma.ru/index.php/ru/documents/drugs/299-708-23-2010 (10.10.2016) (in Russian).
  6. Onishсhenko G.G., Tutelyan V.A. O koncepcii toksikologicheskih issledovanij, metodologii ocenki riska, metodov identifikacii i kolichestvennogo opredelenija nanomaterialov [On concept of toxicological studies, methodology of risk assessment, metods of identification and quantity determining of nanomaterials]. Voprosy pitanija, 2007, vol. 76, no. 6, pp. 4–8 (in Russian).
  7. Zaitseva N.V., Zemlyanova M.A., Zvezdin V.N., Dovbysh A.A., Gmoshinskiy I.V., Khotimchenko S.A., Safenkova I.V., Akafeva T.I. Toksikologicheskaja ocenka nanostrukturnogo dioksida kremnija. Parametry ostroj toksichnosti [Toxicological assessment of nanostructured silica. The acute oral toxicity]. Voprosy pitanija, 2014, vol. 83, no. 2, pp. 42–49 (in Russian).
  8. Shumakova A.A., Arianova E.A., Shipelin V.A., Sidorova Ju.S., Selifanov A.V., Trushina Je.N., Mustafina O.K., Safenkova I.V., Gmoshinskij I.V., Hotimchenko S.A., Tutel'jan V.A. Toksikologicheskaja ocenka nanostrukturnogo dioksida kremnija. I. Integral'nye pokazateli, addukty DNK, uroven' tiolovyh soedinenij i apoptoz kletok pecheni [Toxicological assessment of nanostructured silica. I. Integral indices, adducts of DNA, tissue thiols and apoptosis in liver]. Voprosy pitanija, 2014, vol. 83, no. 3, pp. 52–62 (in Russian).
  9. Shumakova A.A., Avren'eva L.I., Guseva G.V., Kravchenko L.V., Soto S.H., Vorozhko I.V., Sencova T.B., Gmoshinskiy I.V., Khotimchenko S.A., Tutelyan V.A. Toksikologicheskaja ocenka nanostrukturnogo dioksi-da kremnija II. Jenzimolo-gicheskie, biohimicheskie pokazateli, sostojanie sistemy antioksidantnoj zashhity [Tox-icological assessment of nanostructured silica. II. Enzymatic, biochemical indices, state of antioxidative defence]. Voprosy pitanija, 2014, vol. 83, no. 4, pp. 58–66 (in Russian).
  10. Shumakova A.A., Efimochkina N.R., Minaeva L.P., Bykova I.B., Batishheva S.Ju., Markova Ju.M., Trushina Je.N., Mustafina O.K., Sharanova N.Je., Gmoshinskij I.V., Hanfer'jan R.A., Khotimchenko S.A., Shev-eleva S.A., Tutelyan V.A. Toksikologicheskaja ocenka nanostrukturnogo dioksida kremnija. III. Mikro-jekologicheskie, gematologicheskie pokazateli, sostojanie sistemy immuniteta [Toxicological assessment of nanos-tructured silica. III. Microecological, hematological indices, state of cellular immunity]. Voprosy pitanija, 2015, vol. 84, no. 4, pp. 55–65 (in Russian).
  11. Shumakova A.A., Shipelin V.A., Trushina Je.N., Mustafina O.K., Gmoshinskiy I.V., Hanferyan R.A., Khotimchenko S.A., Tutelyan V.A. Toksikologicheskaja ocenka nanostrukturnogo dioksida kremnija. IV. Im-muno-logicheskie i allergologicheskie pokazateli u zhivotnyh, sensibilizirovannyh pishhe-vym allergenom, i zakljuchitel'noe obsuzhdenie [Toxicological assessment of nanostructured silica. IV. Immunological and allergo-logical indices in animals sensitized with food allergen and final discussioin]. Voprosy pitanija, 2015, vol. 84, no. 5, pp. 102–111 (in Russian).
  12. Han B., Guo J., Abrahaley T. et al. Adverse Effect of Nano-Silicon Dioxide on Lung Function of Rats with or without Ovalbumin Immunization. PLoS One, 2011, vol. 6, no. 2, pp. e17236.
  13. Corbalan J.J., Medina C., Jacoby A. et al. Amorphous silica nanoparticles aggregate human platelets: potential implications for vascular homeostasis. Int. J. Nanomedicine, 2012, vol. 7, pp. 631–639.
  14. Corbalan J.J., Medina C., Jacoby A. [et al]. Amorphous silica nanoparticles trigger nitric oxide/peroxynitrite imbalance in human endothelial cells: inflammatory and cytotoxic effects. Int. J. Nanomedicine, 2011, vol. 6, pp. 2821–2835.
  15. Chen Q., Xue Y., Sun J. Kupffer cell-mediated hepatic injury induced by silica nanoparticles in vitro and in vivo. Int. J. Nanomedicine, 2013, vol. 8, pp. 1129–1140.
  16. Eom H.-J., Choi J. SiO2 Nanoparticles Induced Cytotoxicity by Oxidative Stress in Human Bronchial Epithelial Cell, Beas-2B. Environ. Health Toxicol, 2011, vol. 26, pp. e2011013.
  17. Guide for the care and use of laboratory animals. Eighth Edition / Committee for the Update of the Guide for the Care and Use of Laboratory Animals; Institute for Laboratory Animal Research (ILAR); Division on Earth and Life Studies (DELS); National Research Council of the national academies. Washington: The National Academies Press, 2011, 246 p. Available at: https://grants.nih.gov/grants/olaw/Guide-for-the-Care-and-use-of-laborat... (10.10.2016).
  18. Park M.V., Annema W., Salvati A., Lesniak A., Elsaesser A., Barnes C., McKerr G., Howard C.V., Lynch I., Dawson K.A., Piersma A.H., de Jong W.H. In vitro developmental toxicity test detects inhibition of stem cell differentiation by silica nanoparticles. Toxicol. Appl. Pharmacol, 2009, vol. 240, no. 1, pp. 108–116.
  19. Kasper J., Hermanns M.I., Bantz C. et al. Inflammatory and cytotoxic responses of an alveolar-capillary coculture model to silica nanoparticles: Comparison with conventional monocultures. Part. Fibre Toxicol, 2011, vol. 8, pp. 6.
  20. Shi J., Karlsson H.L., Johansson K. [et al.]. Microsomal glutathione transferase 1 protects against toxicity induced by silica nanoparticles but not by zinc oxide nanoparticles. ACS Nano, 2012, vol. 6, no. 3, pp. 1925–1938.
  21. Ye Y., Liu J., Xu J., Sun L., Chen M., Lan M. Nano-SiO2 induces apoptosis via activation of p53 and Bax mediated by oxidative stress in human hepatic cell line. Toxicol. In Vitro, 2010, vol. 24, no. 3, pp. 751–758.
  22. Park E.J., Park K. Oxidative stress and pro-inflammatory responses induced by silica nanoparticles in vi-vo and in vitro. Toxicol. Lett, 2009, vol. 184, no. 1, pp. 18–25.
  23. Nishimori H., Kondoh M., Isoda K. [et al.]. Silica nanoparticles as hepa-totoxicants. Eur. J. Pharm. Bio-pharm, 2009, vol. 72, no. 3, pp. 496–501.
  24. Duan J., Yu Yo., Yu Ya., Li Y., Huang P., Zhou X., Peng S., Sun Z. Silica nanoparticles enhance autophagic activity, disturb endothelial cell homeostasis and impair angiogenesis. Part. Fibre Toxicol, 2014, vol. 11, no. 1, pp. 50.
  25. Silicon dioxide, amorphous. Rome: JECFA, 1973–1992, 2 p. Available at: http://www.fao.org/filead-min/user_upload/jecfa_additives/docs/Monograph... (10.10.2016).
  26. Napierska D., Thomassen L.C., Rabolli V., Lison D., Gonzalez L., Kirsch-Volders M., Martens J.A., Hoet P.H. Size-dependent cytotoxicity of monodisperse silica nanoparticles in human endothelial cells. Small, 2009, vol. 5, no. 7, pp. 846–853.
  27. Van der Zande M., Vandebriel R.J., Groot M.J., Kramer E., Rivera Z.E.H., Rasmussen K., Ossenkoppele J.S., Tromp P., Gremmer E.R., Peters R.J.B., Hendriksen P.J., Marvin H.J.P., Hoogenboom R.L.A.P., Peijnenburg A.A.M., Bouwmeester H. Sub-chronic toxicity study in rats orally exposed to nanostructured silica. Part. Fibre Toxicol, 2014, vol. 11, pp. 8.
  28. Lee S., Kim M.-S., Lee D., Kwon T.K., Khang D., Yun H.-S., Kim S.-H. The comparative immu¬no-toxicity of mesoporous silica nanoparticles and colloidal silica nanoparticles in mice. Int. J. Nanomedicine, 2013, vol. 8, pp. 147–158.
  29. Yoshida T., Yoshioka Y., Fujimura M. [et al]. Promotion of allergic immune responses by intranasally-administrated nanosilica particles in mice. Nanoscale Res. Lett, 2011, vol. 6, no. 1, pp. 192–204.

You are here