Modeling risk evolution of digestive tract functional violations when exposed to chemical environmental factors

View or download the full article: 
Authors: 

M.R. Kamaltdinov

Organization: 

FBSI “Federal Scientific Center for Medical and Preventive Health Risk Management Technologies “, Russian Federation, Perm, 82 Monastyrskaya St., 614045
FSBEI HVE “Perm National Research Polytechnic University“,Russian Federation, Perm, 29 Komsomolsky prospect, 614990

Abstract: 

Modern methods of health risk assessment are based on the representation of individual and public health as a dynamic process of “evolution”, which describes a continuous course of negative (and positive) changes in the condition of the body. The article presents a conceptual diagram of multilevel health risk evolution modeling under the influence of environmental factors. The main aspects associated with the simulation of digestive processes in the “meso level” are considered. Some results of solving the problem of the flow in the digestive tract antroduodenal area taken into account tract motility. Further development ways of the model are outlines – account of biochemical reactions, secretory and absorptive functions tract. The proposed approach will enable not only to predict the risk of digestive system functional disorders, but also take into account basic physiological processes, mechanisms of income, distribution, excretion of chemicals.

Keywords: 
mathematical modeling, functional disorders, digestive system, peristaltic transport, chemical hazards
Kamaltdinov M.R. Modeling risk evolution of digestive tract functional violations when exposed to chemical environmental factors. Health Risk Analysis, 2015, no. 2, pp. 82-88. DOI: 10.21668/health.risk/2015.2.10.eng
References: 
  1. Gavrilov L.A., Gavrilova N.S. Lifetime biology. Moscow: Nauka, 1991, 280 p.
  2. Trusov P.V., Zaitseva N.V., Kiryanov D.A., Kamaltdinov M.R., Tsinker M.Ju., Chigvincev V.M., Lanin D.V. Mathematical model of the evolution of functional disorders in humans, taking into account environmental factors. Matematicheskaja biologija i bioinformatika. 2012, vol. 2, pp. 589–610. Available at: http://www.matbio.org/ 2012/Trusov_7_589.pdf
  3. Mashincov E.A., Jakovlev A.E. Quantitative evaluation of public health quality by the criterion of lost years of life (on the example of Tula). Izvestija TulGU. Ser. Matematika. Mehanika. Informatika, 2004, vol. 10, no. 4, pp. 138–174.
  4. Izmerov N.F., Denisov Je.I., Prokopenko L.V., Sivochalova O.V., Stepanjan I.V., Chelishheva M.Ju., Che-salin P.V. Methodology to reveal and prevent diseases associated to work. Medicina truda i promyshlennaja jeko-logija, 2010, no. 9, pp. 1–7.
  5. Sakovich V.A., Gogoleva M.V., Redko V.I., Gubin A.T. Load radiation risk model and its modifications. Problemy analiza riska, 2004, vol. 1, no. 1, pp. 76–98.
  6. Nigmatulin R.I. The dynamics of multiphase media. Part 1.: Nauka, 1987, 464 p.
  7. Samura B.A., Dralkin A.V. Pharmacokinetics. Harkov: Osnova, 1996, 286 p.
  8. Trusov P.V., Zaitseva N.V., Kamaltdinov M.R. Modelling digestive processes in view of functional disord-ers in the human body: conceptual and mathematical formulation, structure of the model. Rossijskij zhurnal biomehaniki, 2013, no. 4, pp. 67–83.
  9. Tsinker M.Ju. Human breath as a biomechanical process. Matematicheskoe modelirovanie v estestvennyh naukah: materialy XXIII Vserossijskoj shkoly-konferencii molodyh uchenyh i studentov. Perm': Izd-vo PNIPU; 2014, no. 1, pp. 290–292.
  10. Zaitseva N.V., Kiryanov D.A., Lanin D.V., Chigvintsev V.M. A Mathematical Model of the Immune and Neuroendocrine Systems Mutual Regulation under the Technogenic Chemical Factors Impact. Computational and Mathematical Methods in Medicine. 2014; 2014. Available at: http://www.hindawi.com/journals/cmmm/2014/4924 89/ doi:10.1155/2014/492489.
  11. Ansys fluent 12.0. Theory guide. 2009. Available at: http://orange.engr.ucdavis.edu/Documentation12.0/ 120/FLUENT/flth.pdf
  12. Olthoff L.W., van der Bilt A., Bosman F., Kleizen H.H. Distribution of particle sizes in food comminuted by human mastication. Archs oral boil, 1984, vol. 29, pp. 899–903.
  13. Ferrua M.J, Singh R.P. Modeling the fluid dynamics in a human stomach to gain insight of food digestion. Journal of food science, 2010, vol. 75, pp. 151–162.
  14. Pal A., Indireshkumar K., Schwizer W., Abrahamsson B., Fried M., Brasseur J.G. Gastric flow and mixing studied using computer simulation. Proc. R. Soc. Lond. B, 2004, vol. 271, pp. 2587–2594.
  15. Gompertz B. On the Nature of the Function Expressive of the Law of Human Mortality, and on a New Mode of Determining the Value of Life Contingencies. Philosophical Transactions of the Royal Society of London. 1825; 115: 513–585. doi:10.1098/rstl.1825.0026.
  16. Kong F., Singh R.P. Disintegration of solid foods in human stomach. Journal of food science, 2008, vol. 73, pp. 67–80.
  17. Schiller L., Naumann Z. A drag coefficient correlation. Ver. Deutsh. Ing, 1935, vol. 77, pp. 318.
  18. Schlessinger L., Eddy D.M. Archimedes: a new model for simulating health care systems – the mathemat-ical formulation. Journal of Biomedical Informatics, 2002, vol. 35, pp. 37–50.
  19. Kiryanov D.A., Kamaltdinov M.R. Methods of calculating additional morbidity and mortality on the basis of public health risk evolutionary modeling. Analiz riska zdorov'ju, 2014, no. 1, pp. 31–39.
  20. Schulze K. Imaging and modeling of digestion in the stomach and the duodenum. Neurogastroenterol. Motil, 2006, vol. 18, pp. 172–183.
  21. Singh S., Singh R.P. Gastric Digestion of Foods: Mathematical Modeling of Flow Field in a Human Sto-mach. Food Engineering Interfaces, 2011, pp. 99–117.

You are here