Toxicological and hygienic safety assessment of the aqueous suspension of nano-dispersed silicon dioxide, synthesized using liquid-crystal templating

View or download the full article: 
615.9, 614.7

N.V. Zaitseva1, M.A. Zemlyanova1, V.N. Zvezdin1, Ye.V. Sayenko2


1 Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Russian Federation, 82 Monastyrskya St., Perm, 614045,
2 Institute of Technical Chemistry, the Ural Branch of the Russian Academy of Sciences, Russian Federation, 3 Academician Korolev St., Perm, 614045


An experimental study of the aqueous suspension of nano-dispersed silicon dioxide, which had been synthesized using liquid-crystal templating, by a single intra-gastric administration resulted in assigning the tested product to class of hazard 3 according to LD50. We identified a complex of morphological changes in the lowest tested dose of 500 mg/kg which manifested through pronounced changes in the circulatory system – a significant vasodilation and plethora of large blood vessels of the liver, kidneys and the thymus. We also observed the activation of proliferative processes in the lymphatic and macrophage system, the development of degenerative processes in the liver, the kidneys, the red pulp of the spleen and the lungs.

No death of the animals was observed when administering the micro-dispersed analog of the compound intra-gastrically (class of hazard 4). When administering 500 mg/kg, we observed a complex of morphological changes – moderate vascular changes in the kidneys, the heart, the brain, and the liver, insignificant proliferative changes in the liver, a proliferative reaction in the lymphoid tissue, lymphocytic infiltration in the tissues of the oesophagus, the stomach, the liver, the kidneys and the large intestine.

aqueous suspension of nano-dispersed silicon dioxide, potential hazard, toxicological and hygienic assessment, population health
Zaitseva N.V., Zemlyanova M.A., Zvezdin V.N., Sayenko Ye.V. Toxicological and hygienic safety assessment of the aqueous suspension of nano-dispersed silicon dioxide, synthesized using liquid-crystal templating. Health Risk Analysis, 2013, no. 1, pp. 65-72
  1. Tovkaylo M. Nano v massy [Nanoproducts – mass production]. Vedomosti, 2011, no. 40. Available at:
  2. Marketingovyy analiz rynkov nanoproduktov [Marketing analysis of nanoproduct markets]. Moskva: Tekhnosfera, 2008. 349 р.
  3. Khamidulina Kh.Kh., Davydova Yu.O. Mezhdunarodnye podkhody k otsenke toksichnosti i opasnosti nanochastits i nanomaterialov [International approaches to the assessment of the toxicity and hazards of nanoparti-cles and nanomaterials]. Toksikologicheskiy vestnik, 2011, no 6, pp. 53–57.
  4. Donaldson K., Stone V. Current hypotheses on the mechanisms of toxicity of ultrafine particles. Ann Ist. Super Sanita., 2003, no 39 (3). pp. 405–410.
  5. Elder A.C.P. The toxicology of nanomaterials. Rochester, 2007. 37 p.
  6. Morgan D.L. NTP toxicity study report on the atmospheric characteriza-tion, particle size, chemical com-position, and workplace exposure assessment of cel-lulose insulation (CELLULOSEINS). Toxic Rep Ser., 2006, vol. 74, pp. 1–62.
  7. Zaitseva N.V., Zemlyanova M.A., Zvezdin V.N., Saenko E.V., Tarantin A.V., Makhmudov R.R., Lebedin-skaya O.V., Melekhin S.V., Akaf'eva T.I. Toksikologo-gigenicheskaya otsenka bezopasnosti nano- i mikrodis-persnogo oksida mar-gantsa (III, IY) [Hygienic and toxicological assessment of nano-and micro-dispersed manga-nese (III, IY) safety]. Voprosy pitaniya, 2012, vol. 81, no. 5, pp. 13–19.
  8. Meynen P., Cool E., Vansant F. Verified syntheses of mesoporous materials. Microporous and mesoporous materials, 2009, no. 125, pp. 170–223.
  9. MR 1.2.2522-09. Metodicheskie rekomendatsii po vyyavleniyu nanoma-terialov, predstavlyayushchikh po-tentsial'nuyu opasnost' dlya zdorov'ya cheloveka [Methodical guidelines for the identification of nanomaterials which pose a potential risk to human health]. Available at:
  10. Zhang L., Qiao S.Z., Jin Y.G., Chen Z.G. et al. Magnetic hollow spheres of periodic mesoporous organosilica and Fe3O4 Nanocrystals: fabrication and structure control. Advanced Materials, 2008, vol. 20, is. 4, pp. 805–809.
  11. Vallet-Regi M., Balas F., Arcos D. Mesoporous materials for drug delivery. Angew. Chem. Int. Ed., 2007, no. 46, pp. 7548–7558.
  12. Nanonauka i nanotekhnologii. Entsiklopediya sistem zhizneobespecheniya [Nanoscience and nanotechnology]. Ed. O. Avalel'karim, Chun'li Bay, S.P. Kapitsa. Moscow: MAGISTR-PRESS; YuNESKO; EOLSS, 2009. 1040 p.
  13. Tret'yakov Yu.D., Lukashin A.V., Eliseev A.A. Sintez funktsional'nykh nanokompozitov na osnove tver-dofaznykh nanoreaktorov [Synthesis of functional nanocomposites based on solid-phase nanoreactors]. Uspekhi khimii, 2004, vol. 73, no. 9, pp. 974–998.
  14. Stöber W., Fink A., Bohn E. Controlled growth of monodispersed spheres in the micron size range. J. Col-loid and Interface Sci., 1968, vol. 26, pp. 62–69.
  15. Barrett E. P. et al. The determination of pore volume and area distributions in porous substances. I. Com-putations from nitrogen isotherms. J. Am. Chem. Soc., 1951, vol. 73, pp. 373–380.

You are here