Occurrence and characterization of bacillus licheniformis and bacillus subtilis in yam powder products from Vietnam as a health risk factor
Cao Cong Khanh1, Nguyen Thi Kieu Anh2, Pham Ngoc Ha1, Nguyen Thanh Trung1, Tran Hong Ba1, Le Thi Hong Hao1
1National Institute for Food Control, 65 Pham Than Duat Str., Hanoi, Vietnam
2Hanoi University of Pharmacy, 15 Le Thanh Tong Str., Hanoi, Vietnam
Yam (Dioscorea alata L.) is a carbohydrate-rich tuber crop widely consumed in tropical countries. This includes Vietnam, where both fresh yam and yam powder are part of traditional diets. Despite its popularity, the microbiological safety of yam-derived products has received limited scientific attention.
This study investigated the microbial contamination and characterized Bacillus licheniformis and Bacillus subtilis isolated from commercially available yam powder products in Vietnam. The results showed that while B. cereus, E. coli, S. aureus, or Salmonella spp. were not detected, varying levels of total aerobic bacteria, yeasts, and molds were present in most samples. B. licheniformis was the predominant species, isolated from five out of seven powder samples, while B. subtilis appeared in two. It should be noted that all B. licheniformis strains harbored the licA, licB, and licC genes responsible for lichenysin synthesis and displayed multidrug resistance to antibiotics such as erythromycin, amoxicillin-clavulanate, and cephalosporins. In contrast, B. subtilis strains lacked diarrheagenic toxin genes (nhe, hbl, cytK) and showed higher susceptibility to most antibiotics. These findings suggest that microbial contamination may occur during processing or storage and highlight the urgent need for updated microbial guidelines, targeted hygienic practices, and routine toxin gene screening to ensure safety and quality of yam-based food products in Vietnam.
- Miyata R., Sano H., Hoshino S., Kumazawa S. Thermostability and catechol-O-methyltransferase inhibitory activity of acylated anthocyanins from purple yam. Biosci. Biotechnol. Biochem., 2022, vol. 86, no. 7, pp. 916–921. DOI: 10.1093/bbb/zbac060
- de Jesus Lopes Santos S., Barbosa Pires M., Amante E.R., da Cruz Rodrigues A.M., Meller da Silva L.H. Isolation and characterization of starch from purple yam (Dioscorea trifida). J. Food Sci. Technol., 2021, vol. 59, no. 2, pp. 715–723. DOI: 10.1007/s13197-021-05066-9
- Ige M.T., Akintunde F.O. Studies on the local techniques of yam flour production. International Journal of Food Sci-ence and Technology, 2007, vol. 16, no. 3, pp. 303–311. DOI: 10.1111/j.1365-2621.1981.tb01019.x
- Muras A., Romero M., Mayer C., Otero A. Biotechnological applications of Bacillus licheniformis. Crit. Rev. Biotechnol., vol. 41, no. 4, pp. 609–627. DOI: 10.1080/07388551.2021.1873239
- Banoon S., Ali Z., Salih T. Antibiotic resistance profile of local thermophilic Bacillus licheniformis isolated from Maysan province soil. Comunicata Scientiae, 2020, vol. 11, pp. e3291. DOI: 10.14295/cs.v11i0.3291
- Yeak K.Y.C., Perko M., Staring G., Fernandez-Ciruelos B.M., Wells J.M., Abee T., Wells-Bennik M.H.J. Lichenysin Production by Bacillus licheniformis Food Isolates and Toxicity to Human Cells. Front. Microbiol., 2022, vol. 13, pp. 831033. DOI: 10.3389/fmicb.2022.831033
- Kimelman H., Shemesh M. Probiotic Bifunctionality of Bacillus subtilis – Rescuing Lactic Acid Bacteria from Des-iccation and Antagonizing Pathogenic Staphylococcus aureus. Microorganisms, 2019, vol. 7, no. 10, pp. 407. DOI: 10.3390/microorganisms7100407
- Phelps R.J., McKillip J.L. Enterotoxin Production in Natural Isolates of Bacillaceae outside the Bacillus cereus Group. Applied and Environmental Microbiology, 2002, vol. 68, no. 6. DOI: 10.1128/aem.68.6.3147-3151.2002
- Matarante A., Baruzzi F., Cocconcelli P.S., Morea M. Genotyping and Toxigenic Potential of Bacillus subtilis and Bacillus pumilus Strains Occurring in Industrial and Artisanal Cured Sausages. Appl. Environ. Microbiol., 2004, vol. 70, no. 9, pp. 5168–5176. DOI: 10.1128/aem.70.9.5168-5176.2004
- Daramola O.B., Torimiro N., Omole R.K., Okugbesan T.O., Olubamise O.J., Akinsola I.T., Akinfolarin O.O. Potential health and safety risk of enterotoxin-producing Bacillus species isolated from fermentation effluents discharged into the environment. Discover Toxicology, 2025, vol. 2, pp. 3. DOI: 10.1007/s44339-025-00020-2
- Almeida E., Serra C.R., Albuquerque P., Guerreiro I., Teles A.O., Enes P., Tavares F. Multiplex PCR identification and culture-independent quantification of Bacillus licheniformis by qPCR using specific DNA markers. Food Microbiol., 2018, vol. 74, pp. 1–10. DOI: 10.1016/j.fm.2018.02.016
- Đặng Thị Hường, Trần Hồng Ba, Lê Thành Long, Nguyễn Văn Cường, Ninh Thị Hạnh, Nguyễn Thành Trung, Nguyễn Thị Xuân Hường, Lê Thị Hồng Hảo. Xây dựng phương pháp phát hiện và định lượng vi khuẩn Bacillus subtilis bằng kỹ thuật realtime PCR. Vietnam Journal of Food Control (VJFC), 2022, vol. 5, no. 3, pp. 323–334. DOI: 10.47866/2615-9252/vjfc.3951
- Nieminen T., Rintaluoma N., Andersson M.A., Taimisto A.-M., Alivehmas T., Seppälä A., Priha O., Salkinoja-Salonen M.S. Toxinogenic Bacillus pumilus and Bacillus licheniformis from mastitic milk. Vet. Microbiol., 2007, vol. 124, no. 3–4, pp. 329–339. DOI: 10.1016/j.vetmic.2007.05.015
- Saeed B.M.S., Abbas B.A., Al-Jadaan S.A.N. Detection of Bacillus cereus genes responsible for diarrheal and emetic toxins. J. Phys.: Conf. Ser., 2021, vol. 1879, no. 2, pp. 022034. DOI: 10.1088/1742-6596/1879/2/022034
- Agersø Y., Bjerre K., Brockmann E., Johansen E., Nielsen B., Siezen R., Stuer-Lauridsen B., Wels M., Zeidan A.A. Putative antibiotic resistance genes present in extant Bacillus licheniformis and Bacillus paralicheniformis strains are probably intrinsic and part of the ancient resistome. PLoS One, 2019, vol. 14, no. 1, pp. e0210363. DOI: 10.1371/journal.pone.0210363
- Banerjee S., Devaraja T.N., Shariff M., Yusoff F.M. Comparison of four antibiotics with indigenous marine Bacillus spp. in controlling pathogenic bacteria from shrimp and Artemia. J. Fish Dis., 2007, vol. 30, no. 7, pp. 383–389. DOI: 10.1111/j.1365-2761.2007.00819.x
- Ozkocaman V., Ozcelik T., Ali R., Ozkalemkas F., Ozkan A., Ozakin C., Akalin H., Ursavas A. [et al.]. Bacillus spp. among hospitalized patients with haematological malignancies: clinical features, epidemics and outcomes. J. Hosp. Infect., 2006, vol. 64, no. 2, pp. 169–176. DOI: 10.1016/j.jhin.2006.05.014
- Rice L.B. Mechanisms of Resistance and Clinical Relevance of Resistance to β-Lactams, Glycopeptides, and Fluoro-quinolones. Mayo Clin. Proc., 2012, vol. 87, no. 2, pp. 198–208. DOI: 10.1016/j.mayocp.2011.12.003
- Rajput P., Nahar K.S., Rahman K.M. Evaluation of Antibiotic Resistance Mechanisms in Gram-Positive Bacteria. Antibiotics, 2024, vol. 13, no. 12, pp. 1197. DOI: 10.3390/antibiotics13121197
- Madslien E.H., Rønning H.T., Lindbäck T., Hassel B., Andersson M.A., Granum P.E. Lichenysin is produced by most Bacillus licheniformis strains | Journal of Applied Microbiology. J. Appl. Microbiol., 2013, vol. 115, no. 4, pp. 1068–1080. DOI: 10.1111/jam.12299
- Ceuppens S., Boon N., Uyttendaele M. Diversity of Bacillus cereus group strains is reflected in their broad range of pathogenicity and diverse ecological lifestyles. FEMS Microbiol. Ecol., 2013, vol. 84, no. 3, pp. 433–450. DOI: 10.1111/1574-6941.12110