Risk factors able to cause meteorological responses from the immune system in patients with bronchial asthma in sea monsoon climate
L.V. Veremchuk, Т.I. Vitkina
Vladivostok’s branch of Federal governmental budget scientific facility «Far Eastern scientific center of physiology and pathology of breathing» – Scientific research institution of medical climatology and rehabilitation treatment, 73G Russkaya Str., Vladivostok, 690105, Russian Federation
Assessing the characteristics of interseasonal meteorological responses from the immune system remains a controversial scientific problem. The aim of the study was to determine the intensity and nature of the seasonal meteorological responses from the immune system in healthy individuals and patients with bronchial asthma (BA) living in Vladivostok when exposed to favorable and unfavorable weather conditions.
The objects of the study were the immune system indicators and climatic factors selected in a single spatiotemporal aspect. Four hundred and fifty people were examined, of which 160 people were included in the control group and 290 in the group of people with BA. Based on the information-entropy analysis, the seasonal level of meteorological responses was estimated by determining the difference in values (Rconditional – Rwithout %). Using the conditional entropy indicator (Rconditional %) made it possible to estimate the favorable and pathogenic nature of the seasonal impact exerted by climatic factors.
In Vladivostok, weather conditions have the most active effect on the immune system of patients with bronchial asthma, decreasing by 20–30 % from winter to autumn and again sharply increasing by winter, which is the most dangerous period of the year for patients with bronchial asthma. The healthy population of the city has a peak meteorological reaction in winter. Unfavorable and favorable weather conditions are characterized by different levels of impact. In general, the climate in Vladivostok has a predominantly pathogenic orientation for the entire city population. For patients with bronchial asthma, winter and spring are the most unfavorable periods. The immune system of people with bronchial asthma has been shown to actively react to the temperature regime, namely, to low temperatures in winter and to high temperatures with high humidity in summer. By autumn, an increase in health-improving properties of the climate is observed, especially for healthy people.
- Maloney E., Duffy D. Deciphering the relationship between temperature and immunity. Discov. Immunol., 2024, vol. 3, no. 1, pp. kyae001. DOI: 10.1093/discim/kyae001
- Magomedova Z.S., Kagramanova Z.S. Literaturnyi obzor. Sovremennye predstavleniya o funktsional'nykh osoben-nostyakh immunnoi sistemy [Literature review. Modern ideas about functional features of the immune system]. Nauchnoe oboz-renie. Meditsinskie nauki, 2016, no. 2, pp. 68–80. Available at: https://science-medicine.ru/ru/article/view?id=851 (May 16, 2025) (in Russian).
- Zhou Y., Pan J., Xu R., Lu W., Wang Y., Liu T., Fan Z., Li Y. [et al.]. Asthma mortality attributable to ambient tem-peratures: A case-crossover study in China. Environ. Res., 2022, vol. 214, pt 4, pp. 114116. DOI: 10.1016/j.envres.2022.114116
- Zhao Y., Huang Z., Wang S., Hu J., Xiao J., Li X., Liu T., Zeng W. [et al.]. Morbidity burden of respiratory diseases attributable to ambient temperature: a case study in a subtropical city in China. Environ. Health, 2019, vol. 18, no. 1, pp. 89. DOI: 10.1186/s12940-019-0529-8
- Uyanaeva A.I., Rassulova M.A., Maksimova G.A. Sovremennye tekhnologii otsenki klimata i pogody dlya mediko-meteorologicheskogo prognozirovaniya [Up-to-date technologies of climate and weather assessment for medical-meteorological forecasting]. Voprosy kurortologii, fizioterapii i lechebnoi fizicheskoi kul'tury, 2018, vol. 95, no. 2–2, pp. 134 (in Russian).
- Vasilenko A.M., Agasarov L.G., Sharipova M.M. The physical methods for the prevention and management of weather-dependent pathological reactions (a literature review). Voprosy kurortologii, fizioterapii i lechebnoi fizicheskoi kul'tury, 2016, vol. 93, no. 5, pp. 58–65. DOI: 10.17116/kurort2016558-65 (in Russian).
- Veremchuk L.V., Vitkina T.I., Mineeva E.E., Kondratyeva E.V. Assessing short-term weather-induced immune re-sponse in Russian far east residents with respiratory diseases. Russian Open Medical Journal, 2023, vol. 12, no. 2, pp. e0203. DOI: 10.15275/rusomj.2023.0203
- Liu H., Hua L., Liu Q., Pan J., Bao Y. Cold Stimuli Facilitate Inflammatory Responses Through Transient Receptor Potential Melastatin 8 (TRPM8) in Primary Airway Epithelial Cells of Asthmatic Mice. Inflammation, 2018, vol. 41, no. 4, pp. 1266–1275. DOI: 10.1007/s10753-018-0774-y
- Liao W., Zhou L., Zhao X., Song L., Lu Y., Zhong N., Yang P., Sun B., Zhang X. Thermoneutral housing temperature regulates T-regulatory cell function and inhibits ovabumin-induced asthma development in mice. Sci. Rep., 2017, vol. 7, no. 1, pp. 7123. DOI: 10.1038/s41598-017-07471-7
- Ter Horst R., Jaeger M., van de Wijer L., van der Heijden W.A., Janssen A.M.W., Smeekens S.P., Brouwer M.A.E., van Cranenbroek B. [et al.]. Seasonal and Nonseasonal Longitudinal Variation of Immune Function. J. Immunol., 2021, vol. 207, no. 2, pp. 696–708. DOI: 10.4049/jimmunol.2000133
- Gruzdeva A.Yu., Saltykova M.M., Bobrovnitskiy I.P., Balakaeva A.V., German S.V. The influence of seasons on the development of exacerbations of the most common diseases of the circulatory system. Gender and age peculiarities. Gigiena i sanitariya, 2019, vol. 98, no. 8, pp. 839–844. DOI: 10.18821/0016-9900-2019-98-8-839-844 (in Russian).
- Dopico X.C., Evangelou M., Ferreira R.C., Guo H., Pekalski M.L., Smyth D.J., Cooper N., Burren O.S. [et al.]. Widespread seasonal gene expression reveals annual differences in human immunity and physiology. Nature Communications, 2015, vol. 6, pp. 7000. DOI: 10.1038/ncomms8000
- Wyse C., O'Malley G., Coogan A.N., McConkey S., Smith D.J. Seasonal and daytime variation in multiple immune parameters in humans: Evidence from 329,261 participants of the UK Biobank cohort. iScience, 2021, vol. 24, no. 4, pp. 102255. DOI: 10.1016/j.isci.2021.102255
- Saltykova M.M., Bobrovnitskii I.P., Banchenko A.D. Main aspects of studying the influence of meteotropic reactions. Rossiiskii zhurnal vosstanovitel'noi meditsiny, 2018, no. 4, pp. 19–24 (in Russian).
- Davis R.E., Hondula D.M., Sharif H. Examining the diurnal temperature range enigma: why is human health related to the daily change in temperature? Int. J. Biometeorol., 2020, vol. 64, no. 3, pp. 397–407. DOI: 10.1007/s00484-019-01825-8
- Veremchuk L.V., Vitkina T.I., Mineeva T.T., Antonyuk M.V. Predicting the response of the lung function in patients with chronic obstructive pulmonary disease under the influence of climate-technogenic factors. Byulleten' fiziologii i patologii dykhaniya, 2021, no. 82, pp. 53–61. DOI: 10.36604/1998-5029-2021-82-53-61(in Russian).
- Vitkina T.I., Veremchuk L.V., Mineeva E.E., Gvozdenko T.A., Antonyuk M.V., Novgorodtseva T.P., Grigorieva E.A. The influence of weather and climate on patients with respiratory diseases in Vladivostok as global health implication. J. Environ. Health Sci. Eng., 2019, vol. 17, no. 2, pp. 907–916. DOI: 10.1007/s40201-019-00407-5
- Botoeva N.K. Informatsionno-entropiinyi analiz v otsenke vliyaniya meteofaktorov na bol'nykh gipertonicheskoi bolezn'yu [Information-entropy analysis in evaluating meteorological factors' impact on patients with hypertension]. Mezhdu-narodnyi zhurnal prikladnykh i fundamental'nykh issledovanii, 2010, no. 12, pp. 34–35. Availible at: https://applied-research.ru/ru/article/view?id=970 (May 16, 2025) (in Russian).
- Zubatkina I.S., Dobrodeeva L.K., Malachova M.Y., Kryzhanovskiy E.V., Zubatkina O.V. Entropy as a parameter for the immune state estimation. Original'nye issledovaniya, 2012, vol. 4, no. 1, pp. 57–61 (in Russian).
- Zilov V.G., Kirichuk V.F., Fudin N.A. Experimental justification of the chaos hierarchical organization in nervous-muscular physiology. Vestnik novykh meditsinskikh tekhnologii, 2019, vol. 26, no. 1, pp. 133–136. DOI: 10.24411/1609-2163-2019-16375 (in Russian).
- Yakovlev M.Yu., Saltykova M.M., Banchenko A.D., Fedichkina T.P., Nagornev S.N., Khudov V.V., Balakaeva A.V., Bobrovnitskii I.P. Osnovnye mekhanizmy, obuslavlivayushchie razvitie meteotropnykh reaktsii [Main mechanisms underlying the development of meteotropic reactions]. Mezhdunarodnyi zhurnal prikladnykh i fundamental'nykh issledovanii, 2018, no. 10, pp. 187–192. Available at: https://applied-research.ru/ru/article/view?id=12440 (May 16, 2025) (in Russian).
- Rakhmanov R.S., Tarasov A.V. Adaptatsionnye reaktsii organizma pri vliyanii morskogo klimata na zdorov'e nasele-niya v regionakh Rossii: monografiya [Adaptive responses of the human body under the impact of sea climate on health of Russian regional populations: a monograph]. Nizhnii Novgorod, OOO «Stimul-ST» Publ., 2018, 100 p. (in Russian).
- Lei X., Liu L., Chen R., Liu C., Hong J., Cao L., Lu Y., Dong X. [et al.]. Temperature changes between neighboring days and childhood asthma: a seasonal analysis in Shanghai, China. Int. J. Biometeorol., 2021, vol. 65, no. 6, pp. 827–836. DOI: 10.1007/s00484-020-02057-x
- Yin Q., Wang J. The association between consecutive days’ heat wave and cardiovascular disease mortality in Beijing, China. BMC Public Health, 2017, vol. 17, no. 1, pp. 223. DOI: 10.1186/s12889-017-4129-7
- Han A., Deng S., Yu J., Zhang Y., Jalaludin B., Huang C. Asthma triggered by extreme temperatures: From epidemi-ological evidence to biological plausibility. Environ. Res., 2023, vol. 216, pt 2, pp. 114489. DOI: 10.1016/j.envres.2022.114489
- Sangkharat K., Mahmood M.A., Thornes J.E., Fisher P.A., Pope F.D. Impact of extreme temperatures on ambulance dispatches in London, UK. Environ. Res., 2020, vol. 182, pp. 109100. DOI: 10.1016/j.envres.2019.109100
- Xu R., Zhao Q., Coehlo M.S.Z.S., Saldiva P.H.N., Abramson M.J., Li S., Guo Y. Socioeconomic level and associa-tions between heat exposure and all-cause and cause-specific hospitalization in 1,814 Brazilian cities: A nationwide case-crossover study. PLoS Med., 2020, vol. 17, no. 10, pp. e1003369. DOI: 10.1371/journal.pmed.1003369
- Millqvist E. TRP channels and temperature in airway disease–clinical significance. Temperature (Austin), 2015, vol. 2, no. 2, pp. 172–177. DOI: 10.1080/23328940.2015.1012979
- Fang J., Song J., Wu R., Xie Y., Xu X., Zeng Y., Zhu Y., Wang T. [et al.]. Association between ambient temperature and childhood respiratory hospital visits in Beijing, China: a time-series study (2013–2017). Environ. Sci. Pollut. Res., 2021, vol. 28, no. 23, pp. 29445–29454. DOI: 10.1007/s11356-021-12817-w