Update on pulmono-, hepato-, and cardiotoxicity of nanoparticles in vivo: a literature review

UDC: 
613.632.2; 615.916
Authors: 

N.A. Gertan1, M.P. Sutunkova1,2, L.V. Shabardina1, T.V. Makhorina1, K.M. Nikogosyan1, R.F. Minigalieva1,3

Organization: 

1Yekaterinburg Medical Research Center for Prevention and Occupational Health of Industrial Workers, 30 Popov St., Yekaterinburg, 620014, Russian Federation
2Ural State Medical University, 3 Repin St., Yekaterinburg, 620028, Russian Federation
3Ural Federal University, 51 Lenin Ave., Yekaterinburg, 620000, Russian Federation

Abstract: 

A wide use of nanoparticles (NPs) in various industries, agriculture, science, medicine and cosmetology, as well as their omnipresence in the environment necessitate a comprehensive study of their effects on living systems to predict health risks and develop preventive measures. In this study, we aimed to study and systematize available scientific evidence of toxic effects of nanoparticles on the lungs, liver, and heart.
The search for publications issued in 2022–2024 was carried out in Russian (eLIBRARY.RU) and foreign (PubMed, Google Scholar) databases and electronic libraries. Articles containing information on health effects of particles in the 1–100 nanometer range were eligible for inclusion in the review while descriptions of in vitro, in silico, and epidemiological studies were excluded. Of more than 150 articles screened, we selected 31 full-text in vivo study publications (including one preprint) and 18 articles describing the identified effects.

Toxic effects of nanoparticles are attributed to their unique properties and depend on numerous factors, including chemical composition, size, and shape of nanoparticles, their concentration, exposure duration, and ability to cross internal barriers of the body. Adverse effects of nanoparticles are observed at all structural levels of the organism. Nanoparticles mainly induce inflammatory, dystrophic and necrotic changes. Closely interrelated inflammation and oxidative stress are the main mechanisms of toxicity.

Assessment and analysis of an array of experimental studies on potential risks of nanoparticle exposure at various structural levels make it possible to identify minute changes in organs for further development of a system of preventive measures aimed at increasing resistance to such NP-mediated pathological effects.

Keywords: 
nanotoxicity, nanoparticles, intoxication, review, in vivo studies, lung, liver, heart
Gertan N.A., Sutunkova M.P., Shabardina L.V., Makhorina T.V., Nikogosyan K.M., Minigalieva R.F. Update on pulmono-, hepato-, and cardiotoxicity of nanoparticles in vivo: a literature review. Health Risk Analysis, 2025, no. 2, pp. 185–195. DOI: 10.21668/health.risk/2025.2.16.eng
References: 
  1. Zaitseva N.V., Zemlyanova M.A., Stepankov M.S., Ignatova A.M., Nikolaeva A.E., Pustovalova O.V. Issledovanie i sravnitel'naya otsenka toksichnosti nanochastits oksida molibdena (VI) pri mnogokratnoi ingalyatsionnoi ekspozitsii krys [Study and comparative evaluation of toxicity of molybdenum (VI) oxide nanoparticles upon repeated inhalation exposure in rats]. Rossiiskie nanotekhnologii, 2023, vol. 18, no. 2, pp. 260–267. DOI: 10.56304/S1992722323020139 (in Russian).
  2. Stepankov M.S. Peculiarities of bioaccumulation and toxic effects produced by copper oxide (II) nanoparticles on the respiratory organs under inhalation exposure as opposed to their micro-sized chemical analogue: assessment for prevention pur-poses. Health Risk Analysis, 2023, no. 4, pp. 124–133. DOI: 10.21668/health.risk/2023.4.12.eng
  3. Liu Z., Liu H., Vowden R., Hughes L., Qi D., Francis W., Perino G., Pink R. [et al.]. Combination of cobalt, chromium and titanium nanoparticles increases cytotoxicity in vitro and pro-inflammatory cytokines in vivo. J. Orthop. Translat., 2022, vol. 38, pp. 203–212. DOI: 10.1016/j.jot.2022.10.013
  4. Ryabova Yu.V., Sutunkova М.P., Chemezov А.I., Minigalieva I.А., Bushueva Т.V., Shelomentsev I.G., Klinova S.V., Sakhautdinova R.R. Effects of selenium oxide nanoparticles on the morphofunctional state of the liver: experimental data. Health Risk Analysis, 2023, no. 1, pp. 147–156. DOI: 10.21668/health.risk/2023.1.14.eng
  5. Windell D.L., Mourabit S., Moger J., Owen S.F., Winter M.J., Tyler C.R. The influence of size and surface chemistry on the bioavailability, tissue distribution and toxicity of gold nanoparticles in zebrafish (Danio rerio). Ecotoxicology and Environmental Safety, 2023, vol. 260, pp. 115019. DOI: 10.1016/j.ecoenv.2023.115019
  6. Akagi J.-I., Mizuta Y., Akane H., Toyoda T., Ogawa K. Oral toxicological study of titanium dioxide nanoparticles with a crystallite diameter of 6 nm in rats. Part. Fibre Toxicol., 2023, vol. 20, no. 1, pp. 23. DOI: 10.1186/s12989-023-00533-x
  7. Wu L., Wen W., Wang X., Huang D., Cao J., Qi X., Shen S. Ultrasmall iron oxide nanoparticles cause significant tox-icity by specifically inducing acute oxidative stress to multiple organs. Part. Fibre Toxicol., 2022, vol. 19, no. 1, pp. 24. DOI: 10.1186/s12989-022-00465-y
  8. Ziaolhagh S.J., Ardakanizadeh M., Kaveh A., Yahyaei B. Liver tissue changes induced by biological and chemical silver nanoparticles in trained male Wistar rats. J. Trace Elem. Med. Biol., 2023, vol. 79, pp. 127253. DOI: 10.1016/j.jtemb.2023.127253
  9. Desai A.S., Singh A., Edis Z., Haj Bloukh S., Shah P., Pandey B., Agrawal N., Bhagat N. An in vitro and in vivo study of the efficacy and toxicity of plant-extract-derived silver nanoparticles. J. Funct. Biomater., 2022, vol. 13, no. 2, pp. 54. DOI: 10.3390/jfb13020054
  10. Mahjoubian M., Naeemi A.S., Moradi-Shoeili Z., Tyler C.R., Mansouri B. Toxicity of silver nanoparticles in the pres-ence of zinc oxide nanoparticles differs for acute and chronic exposures in zebrafish. Arch. Environ. Contam. Toxicol., 2023, vol. 84, no. 1, pp. 1–17. DOI: 10.1007/s00244-022-00965-0
  11. Azadikhah D., Yalsuyi A.M., Saha S., Saha N.C., Faggio C. Biochemical and pathophysiological responses in Capoeta capoeta under lethal and sub-lethal exposures of silver nanoparticles. Water, 2023, vol. 15, no. 3, pp. 585. DOI: 10.3390/w15030585
  12. Liu N., Guan Y., Zhou C., Wang Y., Ma Z., Yao S. Pulmonary and systemic toxicity in a rat model of pulmonary alveolar proteinosis induced by indium-tin oxide nanoparticles. Int. J. Nanomedicine, 2022, vol. 17, pp. 713–731. DOI: 10.2147/IJN.S338955
  13. Hassanen E.I., Abdelrahman R.E., Aboul-Ella H., Ibrahim M.A., El-Dek S., Shaalan M. Mechanistic approach on the pulmonary oxido-inflammatory stress induced by cobalt ferrite nanoparticles in rats. Biol. Trace Elem. Res., 2024, vol. 202, no. 2, pp. 765–777. DOI: 10.1007/s12011-023-03700-5
  14. Mokhtari-Zaer A., Norouzi F., Askari V.R., Khazdair M.R., Roshan N.M., Boskabady M., Hosseini M., Boskabady M.H. The protective effect of Nigella sativa extract on lung inflammation and oxidative stress induced by lipopolysaccharide in rats. J. Ethnopharmacol., 2020, vol. 253, pp. 112653. DOI: 10.1016/j.jep.2020.112653
  15. Lim J.-O., Kim W.-I., Pak S.-W., Lee S.-J., Park S.-H., Shin I.-S., Kim J.-C. Toll-like receptor 4 is a key regulator of asthma exacerbation caused by aluminum oxide nanoparticles via regulation of NF-κB phosphorylation. J. Hazard. Mater., 2023, vol. 448, pp. 130884. DOI: 10.1016/j.jhazmat.2023.130884
  16. Gungor H., Ekici M., Onder Karayigit M., Turgut N.H., Kara H., Arslanbas E. Zingerone ameliorates oxidative stress and inflammation in bleomycin-induced pulmonary fibrosis: modulation of the expression of TGF-β1 and iNOS. Naunyn Schmiedebergs Arch. Pharmacol., 2020, vol. 393, no. 9, pp. 1659–1670. DOI: 10.1007/s00210-020-01881-7
  17. Zemlyanova M.A., Zaitseva N.V., Stepankov M.S. Peculiarities of toxic effects produced by aluminum oxide nano- and microparticles under multiple inhalation exposure. Gigiena i sanitariya, 2023, vol. 102, no. 5, pp. 502–508. DOI: 10.47470/0016-9900-2023-102-5-502-508 (in Russian).
  18. Torero Gutierrez C., Loizides C., Hafez I., Brostrоm A., Wolff H., Szarek J., Berthing T., Mortensen A. [et al.]. Acute phase response following pulmonary exposure to soluble and insoluble metal oxide nanomaterials in mice. Part. Fibre Toxicol., 2023, vol. 20, no. 1, pp. 4. DOI: 10.1186/s12989-023-00514-0
  19. Sutunkova M.P., Minigalieva I.A., Klinova S.V., Ryabova Yu.V., Tazhigulova A.V., Shabardina L.V., Bateneva V.A., Shelomentsev I.G., Privalova L.I. Acute Toxicity Induced by Inhalation Exposure to Lead Oxide Nanoparticles in Rats. ZNiSO, 2023, vol. 31, no. 9, pp. 24–30. DOI: 10.35627/2219-5238/2023-31-9-24-30 (in Russian).
  20. Poitout-Belissent F., Grant S.N., Tepper J.S. Aspiration and inspiration: Using bronchoalveolar lavage for toxicity as-sessment. Toxicol. Pathol., 2021, vol. 49, no. 2, pp. 386–396. DOI: 10.1177/0192623320929318
  21. Li Y., Yao Q., Xu H., Ren J., Zhu Y., Guo C., Li Y. Lung single-cell transcriptomics offers insights into the pulmonary interstitial toxicity caused by silica nanoparticles. Environ. Health (Wash.), 2024, vol. 2, no. 11, pp. 786–801. DOI: 10.1021/envhealth.4c00052
  22. Nabil A., Ali I., Shiha G., Zahran F. Correlation between oxidative stress and Hydroxyproline content in Liver Fibrosis. Biochemistry Letters, 2021, vol. 17, pp. 22–29. DOI: 10.21608/blj.2021.180487
  23. Cui Y., Robertson J., Maharaj S., Waldhauser L., Niu J., Wang J., Farkas L., Kolb M., Gauldie J. Oxidative stress con-tributes to the induction and persistence of TGF-β1 induced pulmonary fibrosis. Int. J. Biochem. Cell Biol., 2011, vol. 43, no. 8, pp. 1122–1133. DOI: 10.1016/j.biocel.2011.04.005
  24. Li J., Xue J., Wang D., Dai X., Sun Q., Xiao T., Wu L., Xia H. [et al.]. Regulation of gasdermin D by miR-379-5p is involved in arsenite-induced activation of hepatic stellate cells and in fibrosis via secretion of IL-1β from human hepatic cells. Metallomics, 2019, vol. 11, no. 2, pp. 483–495. DOI: 10.1039/c8mt00321a
  25. Batsaikhan B., Lu M.-Y., Yeh M.-L., Huang C.-I., Huang C.-F., Lin Z.-Y., Chen S.-C., Huang J.-F. [et al.]. Elevated interleukin-4 levels predicted advanced fibrosis in chronic hepatitis C. J. Chin. Med. Assoc., 2019, vol. 82, no. 4, pp. 277–281. DOI: 10.1097/JCMA.0000000000000064
  26. Wong S.-W., Ting Y.-W., Yong Y.-K., Tan H.-Y., Barathan M., Riazalhosseini B., Bee C.J., Tee K.-K. [et al.]. Chronic inflammation involves CCL11 and IL-13 to facilitate the development of liver cirrhosis and fibrosis in chronic hepatitis B virus infection. Scand. J. Clin. Lab. Invest., 2021, vol. 81, no. 2, pp. 147–159. DOI: 10.1080/00365513.2021.1876245
  27. Zhao Y., Yang Y., Liu M., Qin X., Yu X., Zhao H., Li X., Li W. COX-2 is required to mediate crosstalk of ROS-dependent activation of MAPK/NF-κB signaling with pro-inflammatory response and defense-related NO enhancement during challenge of macrophage-like cell line with Giardia duodenalis. PLoS Negl. Trop. Dis., 2022, vol. 16, no. 4, pp. e0010402. DOI: 10.1371/journal.pntd.0010402
  28. Firouzamandi M., Hejazy M., Mohammadi A., Shahbazfar A.A., Norouzi R. In vivo toxicity of oral administrated nano-SiO2: Can food additives increase apoptosis? Biol. Trace Elem. Res., 2023, vol. 201, no. 10, pp. 4769–4778. DOI: 10.1007/s12011-022-03542-7
  29. Abo-EL-Sooud K., Abd-Elhakim Y.M., Hashem M.M.M., El-Metwally A.E., Hassan B.A., El-Nour H.H.M. Ameliora-tive effects of quercetin against hepatic toxicity of oral sub-chronic co-exposure to aluminum oxide nanoparticles and lead-acetate in male rats. Naunyn Schmiedebergs Arch. Pharmacol., 2023, vol. 396, no. 4, pp. 737–747. DOI: 10.1007/s00210-022-02351-y
  30. Edan M.S., Sultan F.I., Attallah A.H., Haider A.J., Haider M.J., Tawfeeq A.T., Hussein N.N., Husain Khalif O. Effect of silver nanoparticles synthesized by pulsed laser ablation in liquid on the hematological, hepatic, and renal functions of albino rats. Iraqi Journal of Science, 2023, vol. 64, no. 12, pp. 6242–6256. DOI: 10.24996/ijs.2023.64.12.13
  31. Ali A., Saeed S., Hussain R., Afzal G., Siddique A.B., Parveen G., Hasan M., Caprioli G. Synthesis and characteriza-tion of silica, silver-silica, and zinc oxide-silica nanoparticles for evaluation of blood biochemistry, oxidative stress, and hepato-toxicity in albino rats. ACS Omega, 2023, vol. 8, no. 23, pp. 20900–20911. DOI: 10.1021/acsomega.3c01674
  32. Abulikemu A., Zhao X., Xu H., Li Y., Ma R., Yao Q., Wang J., Sun Z. [et al.]. Silica nanoparticles aggravated the metabolic associated fatty liver disease through disturbed amino acid and lipid metabolisms-mediated oxidative stress. Redox Biol., 2023, vol. 59, pp. 102569. DOI: 10.1016/j.redox.2022.102569
  33. Yousof S.M., Erfan H., Hosny M.M., Shehata S.A., El-Sayed K. Subacute toxic effects of silver nanoparticles oral administration and withdrawal on the structure and function of adult Albino Rats’ hepatic tissue. Saudi J. Biol. Sci., 2022, vol. 29, no. 5, pp. 3890–3898. DOI: 10.1016/j.sjbs.2022.02.054
  34. Nayek S., Lund A.K., Verbeck G.F. Inhalation exposure to silver nanoparticles induces hepatic inflammation and oxi-dative stress, associated with altered renin-angiotensin system signaling, in Wistar rats. Environ. Toxicol., 2022, vol. 37, no. 3, pp. 457–467. DOI: 10.1002/tox.23412
  35. Sallam M.F., Ahmed H.M.S., El-Nekeety A.A., Diab K.A., Abdel-Aziem S.H., Sharaf H.A., Abdel-Wahhab M.A. As-sessment of the oxidative damage and genotoxicity of titanium dioxide nanoparticles and exploring the protective role of holy basil oil nanoemulsions in rats. Biol. Trace Elem. Res., 2023, vol. 201, no. 3, pp. 1301–1316. DOI: 10.1007/s12011-022-03228-0
  36. Adiguzel C., Karaboduk H., Apaydin F.G., Kalender S., Kalender Y. Comparison of nickel oxide nano and micropar-ticles toxicity in rat liver: molecular, biochemical, and histopathological study. Toxicol. Res. (Camb.), 2023, vol. 12, no. 5, pp. 741–750. DOI: 10.1093/toxres/tfad062
  37. Shehata A.M., Salem F.M.S., El-Saied E.M., Abd El-Rahman S.S., Mahmoud M.Y., Noshy P.A. Evaluation of the ameliorative effect of zinc nanoparticles against silver nanoparticle-induced toxicity in liver and kidney of rats. Biol. Trace Elem. Res., 2022, vol. 200, no. 3, pp. 1201–1211. DOI: 10.1007/s12011-021-02713-2
  38. Pisoschi A.M., Pop A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur. J. Med. Chem., 2015, vol. 97, pp. 55–74. DOI: 10.1016/j.ejmech.2015.04.040
  39. Junjvlieke Z., Khan R., Mei C., Cheng G., Wang S., Raza S.H.A., Hong J., Wang X. [et al.]. Effect of ELOVL6 on the lipid metabolism of bovine adipocytes. Genomics, 2020, vol. 112, no. 3, pp. 2282–2290. DOI: 10.1016/j.ygeno.2019.12.024
  40. Pecka-Kiełb E., Kowalewska-Łuczak I., Czerniawska-Piątkowska E., Króliczewska B. FASN, SCD1 and ANXA9 gene polymorphism as genetic predictors of the fatty acid profile of sheep milk. Sci. Rep., 2021, vol. 11, no. 1, pp. 23761. DOI: 10.1038/s41598-021-03186-y
  41. Tahri-Joutey M., Andreoletti P., Surapureddi S., Nasser B., Cherkaoui-Malki M., Latruffe N. Mechanisms mediating the regulation of peroxisomal fatty acid beta-oxidation by PPARα. Int. J. Mol. Sci., 2021, vol. 22, no. 16, pp. 8969. DOI: 10.3390/ijms22168969
  42. Rozhkova A.V., Dmitrieva V.G., Nosova E.V., Dergunov A.D., Limborska S.A., Dergunova L.V. Genomic variants and multilevel regulation of ABCA1, ABCG1, and SCARB1 expression in atherogenesis. J. Cardiovasc. Dev. Dis., 2021, vol. 8, no. 12, pp. 170. DOI: 10.3390/jcdd8120170
  43. Hussar P. Apoptosis Regulators Bcl-2 and Caspase-3. Encyclopedia, 2022, vol. 2, no. 4, pp. 1624–1636. DOI: 10.3390/encyclopedia2040111
  44. Westphal D., Kluck R.M., Dewson G. Building blocks of the apoptotic pore: how Bax and Bak are activated and oli-gomerize during apoptosis. Cell Death Differ., 2014, vol. 21, no. 2, pp. 196–205. DOI: 10.1038/cdd.2013.139
  45. Minigaliyeva I.A., Klinova S.V., Sutunkova M.P., Ryabova Y.V., Valamina I.E., Shelomentsev I.G., Shtin T.N., Bushueva T.V. [et al.]. On the mechanisms of the cardiotoxic effect of lead oxide nanoparticles. Cardiovasc. Toxicol., 2024, vol. 24, no. 1, pp. 49–61. DOI: 10.1007/s12012-023-09814-5
  46. Nemmar A., Al-Salam S., Greish Y.E., Beegam S., Zaaba N.E., Ali B.H. Impact of intratracheal administration of polyethylene glycol-coated silver nanoparticles on the heart of normotensive and hypertensive mice. Int. J. Mol. Sci., 2023, vol. 24, no. 10, pp. 8890. DOI: 10.3390/ijms24108890
  47. Tousson E., El-Gharbawy D.M. Impact of Saussurea lappa root extract against copper oxide nanoparticles induced ox-idative stress and toxicity in rat cardiac tissues. Environ. Toxicol., 2023, vol. 38, no. 2, pp. 415–421. DOI: 10.1002/tox.23688
  48. Herrera-Rodríguez M.A., del Pilar Ramos-Godinez M., Cano-Martínez A., Segura F.C., Ruiz-Ramírez A., Pavón N., Lira-Silva E., Bautista-Pérez R. [et al.]. Food-grade titanium dioxide and zinc oxide nanoparticles induce toxicity and cardiac damage after oral exposure in rats. Part. Fibre Toxicol., 2023, vol. 20, no. 1, pp. 43. DOI: 10.1186/s12989-023-00553-7
Received: 
21.03.2025
Approved: 
05.05.2025
Accepted for publication: 
14.06.2025

You are here