On assessing health risks related to implementation of 5G networks
М.Е. Goshin1, E.V. Garin2
1F.F. Erisman Federal Research Center of Hygiene, 2 Semashko St., Mytishchi, 141014, Russian Federation
2Papanin Institute for Biology of Inland Waters Russian Academy of Sciences, 109 Borok settlement, 152742, Russian Federation
This review covers publications with their focus on analyzing methodological approaches to assessing health risks that might occur due to implementation and development of 5G communication networks. Publications were sought in such databases as Pubmed, Scopus, Web of Science, MedLine, Global Health, and Russian Science Citation Index.
Results obtained by examining exposure to electromagnetic radiofrequency radiation in animal studies have revealed carcinogenic effects in some cases. However, population studies involving large samples of humans who are active mobile communication users have not established any significant effects that may cause health impairments. At the same time, some peculiar features of the 5G technology should be considered including extremely high network density, new scenarios of locating base stations, multiplicity of 5G-devices, networks relying on multiple different ranges (including use of decimeter-, centimeter- and millimeter-long waves). All this, together with use of signals having a great range width and new modulation types with their biological effects still remaining unknown, makes it possible to assume that an electromagnetic background in residential areas will undergo significant transformation involving growing intensity of modulated wideband electromagnetic radiation with a complex spectral structure. Conducted social surveys confirm people’s concerns about health effects produced by 5G technologies. Accordingly, it is necessary to develop new methodological approaches to accomplishing investigations aimed at assessing health risks associated with implementation of such networks. This research work should consider technological peculiarities of 5G networks; results of such studies should give grounds for developing new safe standards and implementing relevant activities aimed at providing electromagnetic safety of the country population.
- Borodin A.S., Kucheryavy A.E. Fifth generation networks as a base to the digital economy. Elektrosvyaz’, 2017, no. 5, pp. 45–49 (in Russian).
- Volkov A.N., Koucheryavy A.E. Identification of service traffic in IMT2020 and subsequent generation communication networks based on flow metadata and machine learning algorithms. Elektrosvyaz’, 2020, no. 11, pp. 21–28. DOI: 10.34832/ELSV.2020.12.11.001 (in Russian).
- Rauniyar A., Engelstad P., Østerbø O.N. RF energy harvesting and information transmission based on NOMA for wireless powered IoT relay systems. Sensors (Basel), 2018, vol. 18, no. 10, pp. 3254. DOI: 10.3390/s18103254
- Zhang Z., Xiao Y., Ma Z., Xiao M., Ding Z., Lei X., Karagiannidis G.K., Fan P. 6G Wireless Networks: Vision, Requirements, Architecture, and Key Technologies. IEEE VT Magazine, 2019, vol. 14, no. 3, pp. 28–41. DOI: 10.1109/MVT.2019.2921208
- Mordachev V. Estimation of Electromagnetic Background Intensity Created by Wireless Systems in Terms of the Prediction of Area Traffic Capacity. 2019 International Symposium on Electromagnetic Compatibility – EMC EUROPE, Barce-lona, Spain, September 2–6, 2019, pp. 82–87. DOI: 10.1109/EMCEurope.2019.8871529
- Maslov M.Yu., Spodobaev Yu.M., Spodobaev M.Yu. Electromagnetic safety: critical features of 5G networks. El-ektrosvyaz’, 2019, no. 4, pp. 53–58 (in Russian).
- IARC classifies radiofrequency electromagnetic fields as possibly carcinogenic to humans: Press release 208. In-ternational Agency for Research on Cancer, Lyon, France, May, 2011. Available at: https://www.iarc.who.int/wp-content/uploads/2018/07/pr208_E.pdf (May 25, 2024).
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans Non-ionizing radiation, Part 2: Radiofrequency electromagnetic fields. IARC Monogr. Eval. Carcinog. Risks Hum., 2013, vol. 102, pt 2, pp. 1–460.
- National Toxicology Program. Toxicology and carcinogenesis studies in Sprague Dawley (Hsd: Sprague Dawley SD) rats exposed to whole-body radio frequency radiation at a frequency (900 MHz) and modulations (GSM and CDMA) used by cell phones. Natl Toxicol. Program Tech. Rep., 2018, no. 595, pp. NTP-TR-595. DOI: 10.22427/NTP-TR-595
- National Toxicology Program. Toxicology and carcinogenesis studies in B6C3F1/N mice exposed to whole-body radio frequency radiation at a frequency (1,900 MHz) and modulations (GSM and CDMA) used by cell phones. Natl Toxicol. Program Tech. Rep., 2018, no. 596, pp. NTP-TR-596. DOI: 10.22427/NTP-TR-596
- Falcioni L., Bua L., Tibaldi E., Lauriola M., De Angelis L., Gnudi F., Mandrioli D., Manservigi M. [et al.]. Report of final results regarding brain and heart tumors in Sprague-Dawley rats exposed from prenatal life until natural death to mobile phone radiofrequency field representative of a 1.8 GHz GSM base station environmental emission. Environ. Res., 2018, vol. 165, pp. 496–503. DOI: 10.1016/j.envres.2018.01.037
- Hruby R., Neubauer G., Kuster N., Frauscher M. Study on potential effects of “902-MHz GSM-type wireless com-munication signals” on DMBA-induced mammary tumours in Sprague–Dawley rats. Mutat. Res., 2008, vol. 649, no. 1–2, pp. 34–44. DOI: 10.1016/j.mrgentox.2007.07.016
- Nelson D.A., Nelson M.T., Walters T.J., Mason P.A. Skin heating effects of millimeter-wave irradiation-thermal modeling results. IEEE Trans. Microw. Theory Tech., 2000, vol. 48, no. 11, pp. 2111–2120. DOI: 10.1016/10.1109/22.884202
- Roelandts R. Cellular phones and the skin. Dermatology, 2003, vol. 207, no. 1, pp. 3–5. DOI: 10.1159/000070932
- Elder J. Ocular effects of radiofrequency energy. Bioelectromagnetics, 2003, suppl. 6, pp. S148–S161. DOI: 10.1002/bem.10117
- Volkow N.D., Tomasi D., Wang G.-J., Vaska P., Fowler J.S., Telang F., Alexoff D., Logan J., Wong C. Effects of cell phone radiofrequency signal exposure on brain glucose metabolism. JAMA, 2011, vol. 305, no. 8, pp. 808–813. DOI: 10.1001/jama.2011.186
- Singh R., Nath R., Mathur A.K., Sharma R.S. Effect of radiofrequency radiation on reproductive health. Indian J. Med. Res., 2018, vol. 148, suppl. 1, pp. S92–S99. DOI: 10.4103/ijmr.IJMR_1056_18
- Erogul O., Oztas E., Yildirim I., Kir T., Aydur E., Komesli G., Irkilata H.C., Irmak M.K., Peker A.F. Effects of elec-tromagnetic radiation from a cellular phone on human sperm motility: an in vitro study. Arch. Med. Res., 2006, vol. 37, no. 7, pp. 840–843. DOI: 10.1016/j.arcmed.2006.05.003
- Yan J.-G., Agresti M., Bruce T., Yan Y.H., Granlund A., Matloub H.S. Effects of cellular phone emissions on sperm motility in rats. Fertil. Steril., 2007, vol. 88, no. 4, pp. 957–964. DOI: 10.1016/j.fertnstert.2006.12.022
- Lukyanova S.N., Karpikova N.I., Grigoryev Yu.G., Veselovskiy I.A. The study of responses of the human brain to electromagnetic field of non-thermal intensity. Gigiena i sanitariya, 2017, vol. 96, no. 9, pp. 848–854. DOI: 10.18821/0016-9900-2017-96-9-848-854 (in Russian).
- Jakusova V., Hamza Sladicekova K. Electromagnetic Fields as a Health Risk Factor. Clinical Social Work and Health Intervention, 2022, vol. 13, no. 6, pp. 49–57.
- Khorseva N.I., Grigoriev P.E. Electromagnetic fields of cellular communication as a health risk factor for children and adolescents (review). Health Risk Analysis, 2023, no. 2, pp. 186–193. DOI: 10.21668/health.risk/2023.2.18.eng
- Electromagnetic hypersensitivity. WHO, 2005. Available at: https://www.who.int/teams/environment-climate-change-and-health/radiatio... (May 24, 2024).
- Rubin G.J., Munshi J.D., Wessely S. Electromagnetic hypersensitivity: a systematic review of provocation studies. Psychosom. Med., 2005, vol. 67, no. 2, pp. 224–232. DOI: 10.1097/01.psy.0000155664.13300.64
- Bosch-Capblanch X., Esu E., Oringanje C.M., Dongus S., Jalilian H., Eyers J., Auer C., Meremikwu M., Röösli M. The effects of radiofrequency electromagnetic fields exposure on human self-reported symptoms: A systematic review of human experimental studies. Environ. Int., 2024, vol. 187, pp. 108612. DOI: 10.1016/j.envint.2024.108612
- Radiation: Electromagnetic fields. WHO, 2016. Available at: https://www.who.int/peh-emf/about/WhatisEMF/en/index1.html (May 23, 2020).
- Electromagnetic fields and public health. WHO. Available at https://www.who.int/teams/environment-climate-change-and-health/radiatio... (May 23, 2020).
- Lee H.-J., Lee J.-S., Pack J.-K., Choi H.-D., Kim N., Kim S.-H., Lee Y.-S. Lack of teratogenicity after combined ex-posure of pregnant mice to CDMA and WCDMA radiofrequency electromagnetic fields. J. Radiat. Res., 2009, vol. 172, no. 5, pp. 648–652. DOI: 10.1667/RR1771.1
- Hussein S., El-Saba A.-A., Galal M.K. Biochemical and histological studies on adverse effects of mobile phone radia-tion on rat’s brain. J. Chem. Neuroanat., 2016, vol. 78, pp. 10–19. DOI: 10.1016/j.jchemneu.2016.07.009
- Recordati C., Maglie M.D., Marsella G., Milite G., Rigamonti A., Paltrinieri S., Scanziani E. Long-term study on the effects of housing C57BL/6NCrl mice in cages equipped with wireless technology generating extremely low-intensity electro-magnetic fields. Toxicol. Pathol., 2019, vol. 47, no. 5, pp. 598–611. DOI: 10.1177/0192623319852353
- Yinhui P., Hui G., Lin L., Xin A., Qinyou T. Effect of cell phone radiation on neutrophil of mice. Int. J. Radiat. Biol., 2019, vol. 95, no. 8, pp. 1178–1184. DOI: 10.1080/09553002.2019.1607605
- Lin J.C. Carcinogenic Effect of Wireless Communication Radiation in Rodents. In book series: Advances in Electro-magnetic Fields in Living Systems, 2009, vol. 5, pp. 35–82. DOI: 10.1007/978-0-387-92736-7_2
- Jargin S.V. On the biological effects of radiofrequency electromagnetic fields. Sibirskii nauchnyi meditsinskii zhurnal, 2019, vol. 39, no. 5, pp. 52–61. DOI: 10.15372/ SSMJ20190506 (in Russian).
- Slesin L. Comments on “Extremely low frequency electric fields and cancer: assessing the evidence” by Kheifets et al. Bioelectromagnetics, 2010, vol. 31, no. 2, pp. 102–103. DOI: 10.1002/bem.20558
- Huff J., Jacobson M.F., Davis D.L. The limits of two-year bioassay exposure regimens for identifying chemical car-cinogens. Environ. Health Perspect., 2008, vol. 116, no. 11, pp. 1439–1442. DOI: 10.1289/ehp.10716
- Specifications for the conduct of studies to evaluate the toxic and carcinogenic potential of chemical, biological, and physical agents in laboratory animals for the national toxicology program. NTP Research Triangle Park, NC, 2011.
- Gift J.S., Caldwell J.C., Jinot J., Evans M.V., Cote I., Vandenberg J.J. Scientific considerations for evaluating cancer bioassays conducted by the Ramazzini institute. Environ. Health Perspect., 2013, vol. 121, no. 11–12, pp. 1253–1263. DOI: 10.1289/ehp.1306661
- Test no. 453: Combined chronic toxicity/carcinogenicity studies. OECD, 2018. Available at: https://tinyurl.com/y86zk5kj (May 27, 2024).
- Arts J.H.E., Muijser H., Jonker D., van de Sandt J.J.M., Bos P.M.J., Feron V.J. Inhalation toxicity studies: OECD guidelines in relation to REACH and scientific developments. Exp. Toxicol. Pathol., 2008, vol. 60, no. 2–3, pp. 125–133. DOI: 10.1016/j.etp.2008.01.011
- Vornoli A., Falcioni L., Mandrioli D., Bua L., Belpoggi F. The contribution of in vivo mammalian studies to the knowledge of adverse effects of radiofrequency radiation on human health. Int. J. Environ. Res. Public Health, 2019, vol. 16, no. 18, pp. 3379. DOI: 10.3390/ijerph16183379
- Smith-Roe S.L., Wyde M.E., Stout M.D., Winters J.W., Hobbs C.A., Shepard K.G., Green A.S., Kissling G.E. [et al.]. Evaluation of the genotoxicity of cell phone radiofrequency radiation in male and female rats and mice following subchronic exposure. Environ. Mol. Mutagen., 2020, vol. 61, no. 2, pp. 276–290. DOI: 10.1002/em.22343
- Larjavaara S., Schuz J., Swerdlow A., Feychting M., Johansen C., Lagorio S., Tynes T., Klaeboe L. [et al.]. Location of gliomas in relation to mobile telephone use: a case-case and casespecular analysis. Am. J. Epidemiol., 2011, vol. 174, no. 1, pp. 2–11. DOI: 10.1093/aje/kwr071
- ICNIRP Note on Recent Animal Carcinogenesis Studies. ICNIRP, 2018. Available at: https://www.icnirp.org/
cms/upload/publications/ICNIRPnote2018.pdf (April 09, 2024). - Joseph W., Frei P., Roosli M., Thuróczy G., Gajsek P., Trcek T., Bolte J., Vermeeren G. [et al.]. Comparison of per-sonal radio frequency electromagnetic field exposure in different urban areas across Europe. Environ. Res., 2010, vol. 110, no. 7, pp. 658–663. DOI: 10.1016/j.envres.2010.06.009
- Durrenberger G., Frohlich J., Roosli M., Mattsson M.-O. EMF monitoring–concepts, activities, gaps and options. Int. J. Environ. Res. Public Health, 2014, vol. 11, no. 9, pp. 9460–9479. DOI: 10.3390/ijerph110909460
- Chiaraviglio L., Galan-Jimenez J., Fiore M., Blefari-Melazzi N. Not in my neighborhood: A user equipment perspective of cellular planning under restrictive EMF limits. IEEE Access, 2019, vol. 7, pp. 6161–6185. DOI: 10.1109/access.2018.2888916
- Chiaraviglio L., Di Paolo C., Bianchi G., Blefari-Melazzi N. Is it safe living in the vicinity of cellular towers? Analysis of long-term human EMF exposure at population scale. 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), Antwerp, Belgium, May, 2020. DOI: 10.1109/vtc2020-spring48590.2020.9129577
- Chiaramello E., Bonato M., Fiocchi S., Tognola G., Parazzini M., Ravazzani P., Wiart J. Radio frequency electro-magnetic fields exposure assessment in indoor environments: A review. Int. J. Environ. Res. Public Health, 2019, vol. 16, no. 6, pp. 955. DOI: 10.3390/ijerph16060955
- Cell phone towers. American Cancer Society, 2020. Available at: https://www.cancer.org/cancer/cancer-causes/radiation-exposure/cellular-... (March 16, 2024).
- Elliott P., Toledano M.B., Bennett J., Beale L., de Hoogh K., Best N., Briggs D.J. Mobile phone base stations and early childhood cancers: case-control study. BMJ, 2010, vol. 340, pp. c3077. DOI: 10.1136/bmj.c3077
- Jazyah Y.H. Thermal and Nonthermal Effects of 5 G Radio-Waves on Human's Tissue. Scientific World Journal, 2024, vol. 2024, pp. 3801604. DOI: 10.1155/2024/3801604
- Nikitina V.N., Kalinina N.I., Lyashko G.G., Dubrovskaya E.N., Plekhanov V.P. Special features of the architecture of 5G networks. Probabilistic forecasting of the impact of electromagnetic fields of radio frequencies on the population (literature review). Gigiena i sanitariya, 2021, vol. 100, no. 8, pp. 792–796. DOI: 10.47470/0016-9900-2021-100-8-792-796 (in Russian).
- INTERPHONE Study Group. Brain tumour risk in relation to mobile telephone use: results of the INTERPHONE international case-control study. Int. J. Epidemiol., 2010, vol. 39, no. 3, pp. 675–694. DOI: 10.1093/ije/dyq079
- INTERPHONE Study Group. Acoustic neuroma risk in relation to mobile telephone use: results of the interphone international case-control study. Cancer Epidemiol., 2011, vol. 35, no. 5, pp. 453–464. DOI: 10.1016/j.canep.2011.05.012
- Frei P., Poulsen A.H., Johansen C., Olsen J.H., Steding-Jessen M., Schuz J. Use of mobile phones and risk of brain tumours: update of Danish cohort study. BMJ, 2011, vol. 343, pp. d6387. DOI: 10.1136/bmj.d6387
- Benson V.S., Pirie K., Schuz J., Reeves G.K., Beral V., Green J., Million Women Study Collaborators. Mobile phone use and risk of brain neoplasms and other cancers: prospective study. Int. J. Epidemiol., 2013, vol. 42, no. 3, pp. 792–802. DOI: 10.1093/ije/dyt072
- Koh T.H., Choi J.W., Seo M., Choi H.-D., Kim K. Factors affecting risk perception of electromagnetic waves from 5G network base stations risk. Bioelectromagnetics, 2020, vol. 41, no. 7, pp. 491–499. DOI: 10.1002/bem.22290
- Freudenstein F., Wiedemann P.M., Brown T.W.C. Exposure perception as a key indicator of risk perception and acceptance of sources of radio frequency electromagnetic fields. J. Env. Publ. Health, 2015, pp. 198272. DOI: 10.1155/2015/198272
- Kim K., Kim H.-J., Song D.J., Cho Y.M., Choi J.W. Risk perception and public concerns of electromagnetic waves from cellular phones in Korea. Bioelectromagnetics, 2014, vol. 35, no. 4, pp. 235–244. DOI: 10.1002/bem.21836
- Morgan J., Reidy J., Probst T. Age group differences in household accident risk perceptions and intentions to reduce hazards. Int. J. Environ. Res. Public Health, 2019, vol. 16, no. 12, pp. 2237. DOI: 10.3390/ijerph16122237
- Ho M.-C., Shaw D., Lin S., Chiu Y.-C. How do disaster characteristics influence risk perception? Risk Anal., 2008, vol. 28, no. 3, pp. 635–643. DOI: 10.1111/j.1539-6924.2008.01040.x
- Cousin M.-E., Siegrist M. Cell phones and health concerns: Impact of knowledge and voluntary precautionary
recommendations. Risk Anal., 2011, vol. 31, no. 2, pp. 301–311. DOI: 10.1111/j.1539-6924.2010.01498.x - Claassen L., van Dongen D., Timmermans D.R.M. Improving lay understanding of exposure to electromagnetic fields; the effect of information on perception of and responses to risk. J. Risk Res., 2017, vol. 20, no. 9, pp. 1115–1131. DOI: 10.1080/13669877.2015.1031268
- Perov S.Yu., Belaya O.V., Rubtsova N.B. The prospects for radiofrequency electromagnetic fields control approaches improvement under 5G wireless communication technologies introduction. Meditsina truda i promyshlennaya ekologiya, 2022, vol. 62, no. 6, pp. 388–396. DOI: 10.31089/1026-9428-2022-62-5-388-396 (in Russian).
- Pawlak R., Krawiec P., Żurek J. On measuring electromagnetic fields in 5G technology. IEEE Access, 2019, vol. 7, pp. 29826–29835. DOI: 10.1109/ACCESS.2019.2902481
- Kharchenko S., Zhizhin N. Fifth Generation of Wireless Networks (5G): Problems and Risks. Ekologiya i promyshlen-nost' Rossii, 2020, vol. 24, no. 12, pp. 58–65. DOI: 10.18412/1816-0395-2020-12-58-65 (in Russian).
- Pantelić S., Vulević B., Milić S. Fuzzy Decision Algorithm for Health Impact Assessment in a 5G Environment. Appl. Sci., 2023, vol. 13, no. 11, pp. 6439. DOI: 10.3390/app13116439
- Markovic V. 5G EMF Exposure: Overview of Recent Research and Safety Standard Updates. 2021 15th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS), 2021, pp. 359–365.
- Egorova A.M., Lutsenko L.A., Sukhova A.V., Kolyuka V.V., Turdyev R.V. Hygienic assessment of the impact of 5G/IMT-2020 communication networks on public health (literature review). Gigiena i sanitariya, 2021, vol. 100, no. 9, pp. 929–932. DOI: 10.47470/0016-9900-2021-100-9-929-932 (in Russian).
- Sofri T., Rahim A., Abdulmalek H., Rani M., Omar K.A., Yasin M.H., Jusoh M., Soh P.J. Health Effects of 5G Base Station Exposure: A Systematic Review. IEEE Access, 2022, vol. 10, pp. 41639–41656.
- Frank J.W. Electromagnetic fields, 5G and health: what about the precautionary principle? J. Epidemiol. Community Health, 2021, vol. 75, no. 6, pp. 562–566.
- Kantsurov A. GKRCh-2020: 5G, sputnikovyi internet IoT [GKRCh-2020: 5G, satellite Internet IoT]. Elektrosvyaz’, 2020, no. 12, pp. 4–8 (in Russian).
- Karipidis K., Mate R., Urban D., Tinker R., Wood A. 5G mobile networks and health – a state-of-the-science review of the research into low-level RF fields above 6 GHz. J. Expo. Sci. Environ. Epidemiol., 2021, vol. 31, no. 4, pp. 585–605. DOI: 10.1038/s41370-021-00297-6