Novel biomarkers for cardiovascular risk prediction among professional divers

UDC: 
613.2
Authors: 

H. Salah, R.M. El-Gazzar, E.W. Abd El-Wahab, F. Charl

Organization: 

Alexandria University, High Institute of Public Health, 22 El-Gaish Rd, Alexandria, 542404, Egypt

Abstract: 

The study relevance is associated with remote negative effects produced by diving on health and related to high fatality rates. Research on cardiovascular risk assessment (CVRA) in divers is scarce. We aimed to evaluate the accuracy of some novel biomarkers versus an established cardiovascular risk estimator in CVRA among professional divers.

A comparative cross-sectional study was conducted on a total of 50 professional divers and an equal number of marine seafarers. Participants were clinically evaluated and subjected to electrocardiography (ECG), basic biochemical analyses, and assessment of some trace metals and oxidative stress biomarkers (OSBMs). Optimal, 10 years, and lifetime CVR was assessed by the Atherosclerotic Cardiovascular Disease (ASCVD) risk estimator. A predictive model for CVR among professional divers was built by testing the performance of some novel biomarkers versus the ASCVD risk estimator.

According to our findings, the professional divers and seafarers showed increased 10 years and lifetime CVD risk compared to the optimal, although the divers were at a higher risk and showed noticeable electrophysiological changes. A proposed model comprising significant CVR predictors and elements of the ASCVD risk estimator improved its performance in CVRA. Corrected QT wave interval was accurate in CVD risk definition and stratification in divers and seafarers (AUC (95 % C.I.) = 0.692 (0.584–0.800), sensitivity = 60.0 %, specificity = 84.0 %, PPV = 78.9, NPV = 67.7, p < 0.001).

Therefore, the CVD risk in divers is quite high and including CVRA in their periodic examinations is crucial. Adding selected biomarkers, particularly ECG changes and some OSBMs with elements of the ASCVD risk estimator improves its accuracy in CVRA.

Keywords: 
risk factors, cardiovascular risk estimators, biomarkers, ECG changes, occupational diseases, oxidative stress biomarkers, professional diving
Salah H., El-Gazzar R.M., Abd El-Wahab E.W., Charl F. Novel biomarkers for cardiovascular risk prediction among pro-fessional divers. Health Risk Analysis, 2025, no. 1, pp. 114–127. DOI: 10.21668/health.risk/2025.1.11.eng
References: 
  1. Denoble P.J., Caruso J.L., Dear G. de L., Pieper C.F., Vann R.D. Common causes of open-circuit recreational diving fatalities. Undersea Hyperb. Med., 2008, vol. 35, no. 6, pp. 393–406.
  2. Mitchell S.J., Bove A.A. Medical screening of recreational divers for cardiovascular disease: consensus discussion at the Divers Alert Network Fatality Workshop. Undersea Hyperb. Med., 2011, vol. 38, no. 4, pp. 289–296.
  3. Perović A., Unić A., Dumić J. Recreational scuba diving: negative or positive effects of oxidative and cardiovascular stress? Biochem. Med. (Zagreb), 2014, vol. 24, no. 2, pp. 235–247. DOI: 10.11613/BM.2014.026
  4. Shokrzadeh M., Ghaemian A., Salehifar E., Aliakbari S., Saravi S.S.S., Ebrahimi P. Serum zinc and copper levels in ischemic cardiomyopathy. Biol. Trace Elem. Res., 2009, vol. 127, no. 2, pp. 116–123. DOI: 10.1007/s12011-008-8237-1
  5. Valko M., Morris H., Cronin M.T.D. Metals, toxicity and oxidative stress. Curr. Med. Chem., 2005, vol. 12, no. 10, pp. 1161–1208. DOI: 10.2174/0929867053764635
  6. Bove A.A. The cardiovascular system and diving risk. Undersea Hyperb. Med., 2011, vol. 38, no. 4, pp. 261–269.
  7. Batsis J.A., Lopez-Jimenez F. Cardiovascular risk assessment – from individual risk prediction to estimation of global risk and change in risk in the population. BMC Med., 2010, vol. 8, pp. 29. DOI: 10.1186/1741-7015-8-29
  8. Preiss D., Kristensen S.L. The new pooled cohort equations risk calculator. Can. J. Cardiol., 2015, vol. 31, no. 5, pp. 613–619. DOI: 10.1016/j.cjca.2015.02.001
  9. Viera A.J., Sheridan S.L. Global risk of coronary heart disease: assessment and application. Am. Fam. Physician, 2010, vol. 82, no. 3, pp. 265–274.
  10. Åsmul K., Irgens Å., Grønning M., Møllerløkken A. Diving and long-term cardiovascular health. Occup. Med. (Lond.), 2017, vol. 67, no. 5, pp. 371–376. DOI: 10.1093/occmed/kqx049
  11. Schnabel R.B., Schulz A., Messow C.M., Lubos E., Wild P.S., Zeller T., Sinning C.R., Rupprecht H.J. [et al.]. Multiple marker approach to risk stratification in patients with stable coronary artery disease. Eur. Heart J., 2010, vol. 31, no. 24, pp. 3024–3031. DOI: 10.1093/eurheartj/ehq322
  12. Tocci G., Figliuzzi I., Presta V., El Halabieh N.A., Citoni B., Coluccia R., Battistoni A., Ferrucci A., Volpe M. Adding markers of organ damage to risk score models improves cardiovascular risk assessment: Prospective analysis of a large cohort of adult outpatients. Int. J. Cardiol., 2017, vol. 248, pp. 342–348. DOI: 10.1016/j.ijcard.2017.07.078
  13. Gunes A.E., Cimsit M. The prevalence of electrocardiogram abnormalities in professional divers. Diving Hyperb. Med., 2017, vol. 47, no. 1, pp. 55–58. DOI: 10.28920/dhm47.1.55-58
  14. Salah H., El-Gazzar R.M., Abd El-Wahab E.W., Charl F. Oxidative stress and adverse cardiovascular effects among professional divers in Egypt. J. Occup. Environ. Hyg., 2023, vol. 20, no. 3–4, pp. 159–169. DOI: 10.1080/15459624.2023.2173364
  15. Chenoweth J.A., Hougham A.M., Colby D.K., Ford J.B., Sandhu J., Albertson T.E., Sutter M.E. Monitoring the corrected QT in the acute care setting: A comparison of the 12-lead ECG and bedside monitor. Am. J. Emerg. Med., 2018, vol. 36, no. 5, pp. 777–779. DOI: 10.1016/j.ajem.2017.10.012
  16. Arnett D.K., Blumenthal R.S., Albert M.A., Buroker A.B., Goldberger Z.D., Hahn E.J., Himmelfarb C.D., Khera A. [et al.]. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: executive summary: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. J. Am. Coll. Cardiol., 2019, vol. 74, no. 10, pp. 1376–1414. DOI: 10.1016/j.jacc.2019.03.009
  17. Garg N., Muduli S.K., Kapoor A., Tewari S., Kumar S., Khanna R., Goel P.K. Comparison of different cardiovascular risk score calculators for cardiovascular risk prediction and guideline recommended statin uses. Indian Heart J., 2017, vol. 69, no. 4, pp. 458–463. DOI: 10.1016/j.ihj.2017.01.015
  18. Melander O., Newton-Cheh C., Almgren P., Hedblad B., Berglund G., Engström G., Persson M., Smith J.G. [et al.]. Novel and conventional biomarkers for prediction of incident cardiovascular events in the community. JAMA, 2009, vol. 302, no. 1, pp. 49–57. DOI: 10.1001/jama.2009.943
  19. Janković R., Marković D., Savić N., Dinić V. Beyond the limits: clinical utility of novel cardiac biomarkers. Biomed Res. Int., 2015, vol. 2015, pp. 187384. DOI: 10.1155/2015/187384
  20. Stephens J.W., Khanolkar M.P., Bain S.C. The biological relevance and measurement of plasma markers of oxidative stress in diabetes and cardiovascular disease. Atherosclerosis, 2009, vol. 202, no. 2, pp. 321–329. DOI: 10.1016/j.atherosclerosis.2008.06.006
  21. Nagarajrao R. Study of trace elements and malondialdehyde levels in cardiovascular disease patients. Int. J. Adv. Res. Biol. Sci., 2014, vol. 1, no. 9, pp. 25–32.
  22. Pougnet R., Di Costanzo L., Loddé B., Henckes A., Dherbecourt L., Lucas D., Jegaden D., Dewitte J.-D. Cardiovascular risk factors and cardiovascular risk assessment in professional divers. Int. Marit. Health, 2012, vol. 63, no. 3, pp. 164–169.
  23. Nittari G., Tomassoni D., Di Canio M., Traini E., Pirillo I., Minciacchi A., Amenta F. Overweight among seafarers working on board merchant ships. BMC Public Health, 2019, vol. 19, no. 1, pp. 45. DOI: 10.1186/s12889-018-6377-6
  24. Khan S.S., Ning H., Wilkins J.T., Allen N., Carnethon M., Berry J.D., Sweis R.N., Lloyd-Jones D.M. Association of body mass index with lifetime risk of cardiovascular disease and compression of morbidity. JAMA Cardiol., 2018, vol. 3, no. 4, pp. 280–287. DOI: 10.1001/jamacardio.2018.0022
  25. Cai L., Liu A., Zhang Y., Wang P. Waist-to-height ratio and cardiovascular risk factors among Chinese adults in Beijing. PLoS One, 2013, vol. 8, no. 7, pp. e69298. DOI: 10.1371/journal.pone.0069298
  26. Sabah K.M.N., Chowdhury A.W., Khan H.I.L.R., Hasan A.T.M.H., Haque S., Ali S., Kawser S., Alam N. [et al.]. Body mass index and waist/height ratio for prediction of severity of coronary artery disease. BMC Res. Notes, 2014, vol. 7, pp. 246. DOI: 10.1186/1756-0500-7-246
  27. Madden C., Putukian M., McCarty E., Young C. Netter's Sports Medicine. Philadelphia PA, USA, Elsevier Health Sciences, 2013, 752 p.
  28. Oldenburg M. Risk of cardiovascular diseases in seafarers. Int. Marit. Health, 2014, vol. 65, no. 2, pp. 53–57. DOI: 10.5603/IMH.2014.0012
  29. Oldenburg M., Jensen H.-J., Latza U., Baur X. Coronary risks among seafarers aboard German-flagged ships. Int. Arch. Occup. Environ. Health, 2008, vol. 81, no. 6, pp. 735–741. DOI: 10.1007/s00420-007-0261-5
  30. Greenland P., Alpert J.S., Beller G.A., Benjamin E.J., Budoff M.J., Fayad Z.A., Foster E., Hlatky M.A. [et al.]. 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. J. Am. Coll. Cardiol., 2010, vol. 56, no. 25, pp. e50–e103. DOI: 10.1016/j.jacc.2010.09.001
  31. Boässon M., Rienks R., van der Ven A., van Hulst R.A. Arrhythmogenicity of scuba diving: Holter monitoring in a hyperbaric environment. Undersea Hyperb. Med., 2019, vol. 46, no. 4, pp. 421–427.
  32. Shenasa M., Shenasa H. Hypertension, left ventricular hypertrophy, and sudden cardiac death. Int. J. Cardiol., 2017, vol. 237, pp. 60–63. DOI: 10.1016/j.ijcard.2017.03.002
  33. Denoble P.J. Hypertension, Left Ventricular Hypertrophy and Sudden Cardiac Death in Scuba Diving. Wound Care & Hyperbaric Medicine, 2013, vol. 4, no. 3, pp. 21–26.
  34. Momtaz M., Mughal N., Siddique A., Mahboob T. Changes in blood levels of trace elements and electrolytes in hypertensive patients. Medical Journal of the Islamic Republic of Iran (MJIRI), 2000, vol. 14, no. 2, pp. 115–118.
  35. Osredkar J., Sustar N. Copper and zinc, biological role and significance of copper/zinc imbalance. J. Clinic. Toxicol., 2011, vol. s3, no. 2161, pp. 0495. DOI: 10.4172/2161-0495.S3-001
  36. do Nanscimento Marreiro D., Cruz K.J.C., Morais J.B.S., Beserra J.B., Soares Severo J., Soares de Oliveira A.R. Zinc and oxidative stress: current mechanisms. Antioxidants (Basel), 2017, vol. 6, no. 2, pp. 24. DOI: 10.3390/antiox6020024
  37. Sarkar P.D., Ramprasad N., Sarkar I.D., Shivaprakash T.M. Study of oxidative stress and trace element levels in patients with alcoholic and non-alcoholic coronary artery disease. Indian J. Physiol. Pharmacol., 2007, vol. 51, no. 2, pp. 141–146.
  38. Park B., Lee Y.-J. Borderline high serum calcium levels are associated with arterial stiffness and 10-year cardiovascular disease risk determined by Framingham risk score. J. Clin. Hypertens. (Greenwich), 2019, vol. 21, no. 5, pp. 668–673. DOI: 10.1111/jch.13532
  39. Tocci G., Presta V. Time Trend Analysis of Hypertension Prevalence, Awareness, Treatment and Control in Italy: Novel Insights from Recent National Surveys in the General Population. High Blood Press. Cardiovasc. Prev., 2017, vol. 24, no. 2, pp. 103–105. DOI: 10.1007/s40292-017-0204-5
Received: 
15.01.2025
Approved: 
04.03.2025
Accepted for publication: 
20.03.2025

You are here