Biological risk factors in the Russian Arctic: A scoping literature review

UDC: 
613 (985) (045) + 664.8: 614.449
Authors: 

V.P. Chashchin1,2, N.V. Zaitseva3,4, М.V. Chashchin2, N.А. Sobolev1,5, Т.Yu. Sorokina1, М.М. Shakirov2

Organization: 

1Northern (Arctic) Federal University named after M.V. Lomonosov, 17 Naberezhnaya Severnoi Dviny, Arkhangelsk, 163002, Russian Federation
2North-Western State Medical University named after I.I. Mechnikov, 41 Kirochnaya St., Saint-Petersburg, 191015, Russian Federation
3Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, 82 Monastyrskaya St., Perm, 614045, Russian Federation
4Russian Academy of Sciences, 14 Leninskii Av., Moscow, 119991, Russian Federation
5M.V. Lomonosov Moscow State University, 1 Leninskie Gory, Moscow, 1119991, Russian Federation

Abstract: 

The goal of the review is to study and summarize approaches to assessing, monitoring, predicting, and countering human health risks associated with the spread of virulent pathogens, parasites, and other biological hazards in the Russian Arctic regions.

A literature search was conducted from May to August 2024 using PubMed, Web of Science, Science Direct, and eLibrary.ru to identify studies on vector-borne pathogens, parasites, and other biological hazards in the Arctic. The review also considered phenomena of bioaccumulation of chemical contaminants in biological food chains that can cause increased susceptibility of humans to infections and the impact of climate change on biological risks in the Arctic. Of the 348 identified publications, 55 articles were selected that met the inclusion criteria.

The analysis revealed significant gaps in the literature on biological risk assessment related to primary data on Arctic zoonotic diseases, with the most limited information related to the sources and pathways of their spread by wild game species. Based on hazard identification, it was established that risk factors for the spread of zoonotic diseases include unfavorable living conditions (inferior quality of life), higher population density, low-quality environment, and socioeconomic considerations. Migratory birds, fish, and animals can significantly contribute to the global spread and pandemics of infectious diseases. Improving our knowledge of wild bird and fish migration routes and vector-borne infectious diseases can help predict future out-breaks and epidemics. The analysis proposed a predictive model for assessing biological risk events associated with this migration.

Keywords: 
Arctic, biological hazards, infectious diseases, health risk factors, pathogen transmission, migratory animals and insects
Chashchin V.P., Zaitseva N.V., Chashchin М.V., Sobolev N.А., Sorokina Т.Yu., Shakirov М.М. Biological risk factors in the Russian Arctic: a scoping literature review. Health Risk Analysis, 2024, no. 4, pp. 160–173. DOI: 10.21668/health.risk/2024.4.14.eng
References: 
  1. Woolhouse M.E., Gowtage-Sequeria S. Host range and emerging and reemerging pathogens. Emerg. Infect. Dis., 2005, vol. 11, no. 12, pp. 1842–1847. DOI: 10.3201/eid1112.050997
  2. Jones K.E., Patel N.G., Levy M.A., Storeygard A., Balk D., Gittleman J.L., Daszak P. Global trends in emerging in-fectious diseases. Nature, 2008, vol. 451, no. 7181, pp. 990–993. DOI: 10.1038/nature06536
  3. GBD 2015 Mortality and Causes of Death Collaborators. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet, 2016, vol. 388, no. 10053, pp. 1459–1544. DOI: 10.1016/S0140-6736(16)31012-1
  4. Global Burden of Disease Collaborative Network. Global Burden of Disease Study 2015 (GBD 2015) Life Expectancy, All-Cause and Cause-Specific Mortality 1980–2015. Seattle, USA, Institute for Health Metrics and Evaluation (IHME), 2016. Available at: https://ghdx.healthdata.org/record/ihme-data/gbd-2015-life-expectancy-al... (October 11, 2024).
  5. Gebreyes W.A., Dupouy-Camet J., Newport M.J., Oliveira C.J.B., Schlesinger L.S., Saif Y.M., Kariuki S., Saif L.J. [et al.]. The Global One Health Paradigm: Challenges and Opportunities for Tackling Infectious Diseases at the Human, Animal, and Environment Interface in Low-Resource Settings. PLoS Negl. Trop. Dis., 2014, vol. 8, no. 11, pp. e3257. DOI: 10.1371/journal.pntd.0003257
  6. Keatts L.O., Robards M., Olson S.H., Hueffer K., Insle S.J., Joly D.O., Kutz S., Lee D.S. [et al.]. Implications of zo-onoses from hunting and use of wildlife in North American Arctic and boreal biomes: pandemic potential, monitoring, and miti-gation. Front. Public Health, 2021, vol. 9, pp. 627–654. DOI: 10.3389/fpubh.2021.627654
  7. Duijns S., Jukema J., Spaans B., van Horssen P., Piersma T. Revisiting the proposed leap-frog migration of bar-tailed godwits along the East-Atlantic Flyway. Ardea, 2012, vol. 100, no. 1, pp. 37–43. DOI: 10.5253/078.100.0107
  8. Parkinson A.J., Evengard B., Semenza J.C., Ogden N., Børresen M.L., Berner J., Brubaker M., Sjöstedt A. [et al.]. Climate change and infectious diseases in the Arctic: establishment of a circumpolar working group. Int. J. Circumpolar Health, 2014, vol. 73, pp. 25163. DOI: 10.3402/ijch.v73.25163
  9. Varpe Ø., Bauer S. Seasonal Animal Migrations and the Arctic: Ecology, Diversity, and Spread of Infectious Agents. In book: Arctic One Health. Challenges for Northern Animals and People; M. Tryland ed. Springer, Cham, 2022, pp. 47–76. DOI: 10.1007/978-3-030-87853-5_3
  10. AbuBakar U., Amrani L., Kamarulzaman F.A., Karsani S.A., Hassandarvish P., Khairat J.E. Avian influenza virus tropism in humans. Viruses, 2023, vol. 15, no. 4, pp. 833. DOI: 10.3390/v15040833
  11. Su S., Wong G., Shi W., Liu J., Lai A.C.K., Zhou J., Liu W., Bi Y., Gao G.F. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol., 2016, vol. 24, no. 6, pp. 490–502. DOI: 10.1016/j.tim.2016.03.003
  12. Dobson A., Lafferty K.D., Kuris A.M., Hechinger R.F., Jetz W. Colloquium paper: homage to Linnaeus: how many parasites? How many hosts? Proc. Natl Acad. Sci. USA, 2008, vol. 105, suppl. 1, pp. 11482–11489. DOI: 10.1073/pnas.0803232105
  13. Vogt N.A. Wild birds and zoonotic pathogens. In book: Zoonoses: Infections Affecting Humans and Animals; A. Sing ed. Springer, Cham, 2023, pp. 1003–1033. DOI: 10.1007/978-3-031-27164-9_47
  14. Dhama K., Karthik K., Tiwari R., Shabbir M.Z., Barbuddhe S., Malik S.V.S., Singh R.K. Listeriosis in animals, its public health significance (food-borne zoonosis) and advances in diagnosis and control: a comprehensive review. Vet. Q., 2015, vol. 35, no. 4, pp. 211–235. DOI: 10.1080/01652176.2015.1063023
  15. Dini F.M., Graziosi G., Lupini C., Catelli E., Galuppi R. Migratory wild birds as potential long-distance transmitters of Toxoplasma gondii infection. Pathogens, 2023, vol. 12, no. 3, pp. 478. DOI: 10.3390/pathogens12030478
  16. Ziarati M., Zorriehzahra M.J., Hassantabar F., Mehrabi Z., Dhawan M., Sharun K., Emran T.B., Dhama K. [et al.]. Zoonotic diseases of fish and their prevention and control. Vet. Q., 2022, vol. 42, no. 1, pp. 95–118. DOI: 10.1080/01652176.2022.2080298
  17. Håkonsholm F., Hetland M.A.K., Svanevik C.S., Lunestad B.T., Löhr I.H., Marathe N.P. Insights into the genetic di-versity, antibiotic resistance and pathogenic potential of Klebsiella pneumoniae from the Norwegian marine environment using whole-genome analysis. Int. J. Hyg. Environ. Health, 2022, vol. 242, pp. 113967. DOI: 10.1016/j.ijheh.2022.113967
  18. Ma Y., Destouni G., Kalantari Z., Omazic A., Evengård B., Berggren C., Thierfelder T. Linking climate and infectious disease trends in the Northern Arctic Region. Sci. Rep., 2021, vol. 11, no. 1, pp. 20678. DOI: 10.1038/s41598-021-00167-z
  19. Leibovici D.G., Bylund H., Björkman C., Tokarevich N., Thierfelder T., Evengård B., Quegan S. Associating land cover changes with patterns of incidences of climate-sensitive infections: an example on tick-borne diseases in the Nordic Area. Int. J. Environ. Res. Public Health, 2021, vol. 18, no. 20, pp. 10963. DOI: 10.3390/ijerph182010963
  20. Waits A., Emelyanova A., Oksanen A., Abass K., Rautio A. Human infectious diseases and the changing climate in the Arctic. Environ. Int., 2018, vol. 121, pt 1, pp. 703–713. DOI: 10.1016/j.envint.2018.09.042
  21. Rantanen M., Karpechko A.Y., Lipponen A., Nordling K., Hyvärinen O., Ruosteenoja K., Vihma T., Laaksonen A. The Arctic has warmed nearly four times faster than the globe since 1979. Commun. Earth Environ., 2022, vol. 3, pp. 168. DOI: 10.1038/s43247-022-00498-3
  22. Smith M.I., Ke Y., Geyman E.C., Reahl J.N., Douglas M.M., Seelen E.A., Magyar J.S., Dunne K.B.J. [et al.]. Mercury stocks in discontinuous permafrost and their mobilization by river migration in the Yukon River Basin. Environ. Res. Lett., 2024, vol. 19, pp. 084041. DOI: 10.1088/1748-9326/ad536e
  23. Revich B., Chashchin V. Climate change impact on public health in the Russian Arctic. Moscow, United Nation in Russia, 2008, 24 p.
  24. AMAP 2017. Adaptation Actions for a Changing Arctic: Perspectives from the Bering-Chukchi-Beaufort Region. Oslo, Norway, Arctic Monitoring and Assessment Programme (AMAP), 2017, 255 p. Available at: https://www.amap.no/documents/download/2993/inline (October 05, 2024).
  25. Orlov D., Menshakova M., Thierfelder T., Zaika Y., Böhme S., Evengard B., Pshenichnaya N. Healthy ecosystems are a prerequisite for human health – A call for action in the era of climate change with a focus on Russia. Int. J. Environ. Res. Public Health, 2020, vol. 17, no. 22, pp. 8453. DOI: 10.3390/ijerph17228453
  26. El-Sayed A., Kamel M. Future threat from the past. Environ. Sci. Pollut. Res., 2021, vol. 28, pp. 1287–1291. DOI: 10.1007/s11356-020-11234-9
  27. Wu R., Trubl G., Taş N., Jansson J.K. Permafrost as a potential pathogen reservoir. One Earth, 2022, vol. 5, no. 4, pp. 351–360. DOI: 10.1016/j.oneear.2022.03.010
  28. Alempic J.-M., Lartigue A., Goncharov A.E., Grosse G., Strauss J., Tikhonov A.N., Fedorov A.N., Poirot O. [et al.]. An Update on Eukaryotic viruses revived from ancient permafrost. Viruses, 2023, vol. 15, no. 2, pp. 564. DOI: 10.3390/v15020564
  29. Revich B.A., Shaposhnikov D.A., Raichich S.R., Saburova S.A., Simonova E.G. Creating zones in administrative dis-tricts located in the russian arctic region specific as per threats of cattle burials decay due to permafrost degradation. Health Risk Analysis, 2021, no. 1, pp. 115–125. DOI: 10.21668/health.risk/2021.1.12.eng
  30. Murray C.C., Maximenko N., Lippiattde S. The influx of marine debris from the Great Japan Tsunami of 2011 to North American shorelines. Mar. Pollut. Bull., 2018, vol. 132, pp. 26–32. DOI: 10.1016/j.marpolbul.2018.01.004
  31. Silva M., Pratheepa V.K., Botana L.M.,Vasconcelos V. Emergent toxins in North Atlantic temperate waters: a challenge for monitoring programs and legislation. Toxins (Basel), 2015, vol. 7, no. 3, pp. 859–885. DOI: 10.3390/toxins7030859
  32. Tryphonas H. Approaches to detecting immunotoxic effects of environmental contaminants in humans. Environ. Health Perspect., 2001, vol. 109, suppl. 6, pp. 877–884. DOI: 10.1289/ehp.01109s6877
  33. Terekhov P.A., Rybakova A.A., Terekhova M.A., Troshina E.A. Awareness of the population in Russian Federation about iodine deficiency, its effects and methods for prevention of iodine deficiency disorders. Klinicheskaya i eksperimental'naya tireoidologiya, 2019, vol. 15, no. 3, pp. 118–123. DOI: 10.14341/ket12239 (in Russian).
  34. Im J.H., Je Y.S., Baek J., Chung M.-H., Kwon H.Y., Lee J.-S. Nutritional status of patients with COVID-19. Int. J. Infect. Dis., 2020, vol. 100, pp. 390–393. DOI: 10.1016/j.ijid.2020.08.018
  35. Kaya M.O., Pamukçu E., Yakar B. The role of vitamin D deficiency on COVID-19: a systematic review and meta-analysis of observational studies. Epidemiol. Health, 2021, vol. 43, pp. e2021074. DOI: 10.4178/epih.e2021074
  36. Bakaeva E.A., Eremeyshvili A.V. Contents of some trace elements in biosubstrates of preschool children of Northern European in Russia. Ekologiya cheloveka, 2016, vol. 23, no. 4, pp. 26–31. DOI: 10.33396/1728-0869-2016-4-26-31 (in Russian).
  37. Artemenkov A.A. The problem of the prevention of endemic human diseases and microelementoses. Profilakticheskaya meditsina, 2019, vol. 22, no. 3, pp. 92–100. DOI: 10.17116/profmed20192203192 (in Russian).
  38. Sorokina T., Sobolev N., Belova N., Aksenov A., Kotsur D., Trofimova A., Varakina Y., Grjibovski A.M. [et al.]. Diet and Blood Concentrations of Essential and Non-Essential Elements among Rural Residents in Arctic Russia. Nutrients, 2022, vol. 14, no. 23, pp. 5005. DOI: 10.3390/nu14235005
  39. Mourtzoukou E.G., Falagas M.E. Exposure to cold and respiratory tract infections. Int. J. Tuberc. Lung Dis., 2007, vol. 11, no. 9, pp. 938–943.
  40. Mäkinen T.M., Juvonen R., Jokelainen J., Harju T.H., Peitso A., Bloigu A., Silvennoinen-Kassinen S., Leinonen M., Hassi J. Cold temperature and low humidity are associated with increased occurrence of respiratory tract infections. Respir. Med., 2009, vol. 103, no. 3, pp. 456–462. DOI: 10.1016/j.rmed.2008.09.011
  41. Ross P.S. The role of immunotoxic environmental contaminants in facilitating the emergence of infectious diseases in marine mammals. Human and Ecological Risk Assessment: An International Journal, 2002, vol. 8, no. 2, pp. 277–292. DOI: 10.1080/20028091056917
  42. Kataoka C., Kashiwada S. Ecological risks due to immunotoxicological effects on aquatic organisms. Int. J. Mol. Sci., 2021, vol. 22, no. 15, pp. 8305. DOI: 10.3390/ijms22158305
  43. Burgner D., Jamieson S.E., Blackwell J.M. Genetic susceptibility to infectious diseases: big is beautiful, but will bigger be even better? Lancet Infect. Dis., 2006, vol. 6, no. 10, pp. 653–663. DOI: 10.1016/S1473-3099(06)70601-6
  44. Fedorova O.S., Kovshirina Y.V., Kovshirina A.E., Fedotova M.M., Deev I.A., Petrovskiy F.I., Filimonov A.V., Dmitrieva A.I. [et al.]. Analysis of Opisthorchis felineus infection and liver and intrahepatic bile ducts cancer incidence rate in Russian Federation. Byulleten' sibirskoi meditsiny, 2016, vol. 15, no. 5, pp. 147–158. DOI: 10.20538/1682-0363-2016-5-147-158 (in Russian).
  45. Shuping L.S., Human I.S., Lues J.F.R., Paulse A.N. The prevalence of viruses related to the production of mussels and oysters in Saldanha Bay: a systematic review. Aquac. J., 2023, vol. 3, no. 2, pp. 90–106. DOI: 10.3390/aquacj3020009
  46. Bluhm B.A., Gebruk A.V., Gradinger R., Hopcroft R.R., Huettmann F., Kosobokova K.N., Sirenko B.I., Weslawski J.M. Arctic marine biodiversity: an update of species richness and examples of biodiversity change. Oceanography, 2011, vol. 24, no. 3, pp. 232–248. DOI: 10.5670/oceanog.2011.75
  47. Wang L., Wang X. Influence of temporary migration on the transmission of infectious diseases in a migrants' home village. J. Theor. Biol., 2012, vol. 300, pp. 100–109. DOI: 10.1016/j.jtbi.2012.01.004
  48. Singh B.B., Ward M.P., Dhand N.K. Geodemography, environment and societal characteristics drive the global diver-sity of emerging, zoonotic and human pathogens. Transbound. Emerg. Dis., 2022, vol. 69, no. 3, pp. 1131–1143. DOI: 10.1111/tbed.14072
  49. Van Westen C.J., Greiving S. Multi-hazard risk assessment and decision making. In book: Environmental hazards methodologies for risk assessment and management; N.R. Dalezios ed. London, IWA Publ., 2017, pp. 31–94. DOI: 10.2166/9781780407135_0031
Received: 
24.09.2024
Approved: 
22.11.2024
Accepted for publication: 
22.12.2024

You are here