Health risks posed by using organic fertilizers

UDC: 
614.76; 631.86
Authors: 

M.V. Kuznetsova1,2, D.A. Kochergina1, E.S. Gorovitz2

Organization: 

1Institute of Ecology and Genetics of Microorganisms of Ural Branch of Russian Academy of Sciences – affiliation of Perm Federal Research Centre of Ural Branch of RAS, 13 Goleva St., Perm, 614081, Russian Federation
2Perm State Medical University named after Academician E.A. Wagner, 26 Petropavlovskaya St., Perm, 614990, Russian Federation

Abstract: 

Agricultural production has been intensifying for a while and this has made for growing volumes of organic wastes; a part of them is later used as fertilizers. At present, more than 200 types of organic fertilizers are employed in agriculture; they differ in their origin, properties, and effects on the environment. Wastes from agricultural productions typically contain biocides, antibiotics included, and also, which is especially important, pathogens and opportunistic pathogenic microorganisms. Soil contamination with such wastes destroys natural biocenosis. Moreover, pathogens that remain in wastes due to absence of proper treatment can pose serious hazard for humans and animals. Safety of food products made of raw materials, growth of which relies on using organic fertilizers, is a significant component of the overall issue.

This analytical review provides a classification and descriptions of organic fertilizers and data on production volumes and accumulation of animal husbandry wastes. It also describes major biological and chemical factors of health risks associated with using organic fertilizers as well as provides the results of up-to-date studies that focus on negative effects of organic fertilizers. Special attention is paid to literature data about negative impacts exerted on human health and the environment by organic fertilizers that contain antibiotics and salts of heavy metals. It is emphasized specifically that organic fertilizers can very often contain copper, zinc, cadmium, nickel, chromium, arsenic, lead and mercury compounds. Improper use of technologies for treatment of organic fertilizers is shown to result in microbial and chemical pollution in soils and water objects. Methods employed to assess effects of animal husbandry wastes on human health and the environment are described considering international and Russian practices and documents that establish regulatory requirements to safe use of organic fertilizers. The review establishes that a strategy for providing safety of agricultural production should consider risks for human health and include systemic monitoring over quality of the environment and population health.

Keywords: 
environment, agricultural productions, health risks, organic fertilizers, biocides, antibiotics, heavy metals, pathogens
Kuznetsova M.V., Kochergina D.A., Gorovitz E.S. Health risks posed by using organic fertilizers. Health Risk Analysis, 2024, no. 4, pp. 145–159. DOI: 10.21668/health.risk/2024.4.13.eng
References: 
  1. Shaji H., Chandran V., Mathew L. Organic fertilizers as a route to controlled release of nutrients. In book: Controlled Release Fertilizers for Sustainable Agriculture. Kottayam, Academic Press Publ., 2021, pp. 231–245. DOI: 10.1016/B978-0-12-819555-0.00013-3
  2. Milkereit J., Geisseler D., Lazicki P., Settles M.L., Durbin-Johnson B.P., Hodson A. Interactions between nitrogen availability, bacterial communities, and nematode indicators of soil food web function in response to organic amendments. Appl. Soil Ecol., 2021, vol. 157, no. 7, pp. 103767. DOI: 10.1016/j.apsoil.2020.103767
  3. Francioli D., Schulz E., Lentendu G., Wubet T., Buscot F., Reitz T. Mineral vs. organic amendments: microbial com-munity structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies. Front. Microbiol., 2016, vol. 7, pp. 1446. DOI: 10.3389/fmicb.2016.01446
  4. Köninger J., Lugato E., Panagos P., Kochupillai M., Orgiazzi A., Briones M.J.I. Manure management and soil biodi-versity: Towards more sustainable food systems in the EU. Agricultural Systems, 2021, vol. 194, no. 3, pp. 103251. DOI: 10.1016/j.agsy.2021.103251
  5. Gržinić G., Piotrowicz-Cieślak A., Klimkowicz-Pawlas A., Górny R.L., Ławniczek-Wałczyk A., Piechowicz L., Ol-kowska E., Potrykus M. [et al.]. Intensive poultry farming: A review of the impact on the environment and human health. Sci. Total Environ., 2023, vol. 858, pt 3, pp. 160014. DOI: 10.1016/j.scitotenv.2022.160014
  6. Qi J., Yang H., Wang X., Zhu H., Wang Z., Zhao C., Li B., Liu Z. State-of-the-art on animal manure pollution control and resource utilization. J. Environ. Chemical Engin., 2023, vol. 11, no. 5, pp. 110462. DOI: 10.1016/j.jece.2023.110462
  7. Gleba O.V. Environmental problems of livestock industry. Agrarnoe i zemel'noe pravo, 2019, no. 7 (175), pp. 67–72 (in Russian).
  8. Zhang H., Schroder J. Animal manure production and utilization in the US. In book: Applied manure and nutrient chem-istry for sustainable agriculture and environment. Dordrecht, Springer Publ., 2014, pp. 1–21. DOI: 10.1007/978-94-017-8807-6_1
  9. Tăbăraşu A.-M., Matache M., Grigore I., Vlăduţoiu L.C., Ungureanu N., Biriş S.-S. Environmental pollution caused by agricultural activities. Acta Technica Corviniensis, 2021, vol. 14, no. 2, pp. 39–46.
  10. Briukhanov A.Yu., Popov V.D., Vasilev E.V., Papushin E.A. Management concept of ecological safety of agro-ecosystems. AgroEkoInzheneriya, 2022, no. 4 (113), pp. 4–18 (in Russian).
  11. Liu S., Wang J., Pu S., Blagodatskaya E., Kuzyakov Y., Razavi B.S. Impact of manure on soil biochemical properties: a global synthesis. Sci. Total Environ., 2020, vol. 745, pp. 141003. DOI: 10.1016/j.scitotenv.2020.141003
  12. Shange R.S., Ankumah R.O., Zabawa R., Dowd S.E. Bacterial community structure and composition in soils under industrial poultry production activities: an observational study. Air, Soil and Water Research, 2013, vol. 6, pp. 91–101. DOI: 10.4137/ASWR.S12009
  13. Hao X., Chang C. Effect of 25 annual cattle manure applications on soluble and exchangeable cations in soil. Soil Science, 2002, vol. 167, pp. 126–134. DOI: 10.1097/00010694-200202000-00005
  14. Schmid C.A.O., Schröder P., Armbruster M., Schloter M. Organic amendments in a long-term field trial-consequences for the bulk soil bacterial community as revealed by network analysis. Microb. Ecol., 2018, vol. 76, no. 1, pp. 226–239. DOI: 10.1007/s00248-017-1110-z
  15. Jacoby R., Peukert M., Succurro A., Koprivova A., Kopriva S. The role of soil microorganisms in plant mineral nutri-tion-current knowledge and future directions. Front. Plant Sci., 2017, vol. 8, pp. 1617. DOI: 10.3389/fpls.2017.01617
  16. Pachepsky Y.A., Sadeghi A.M., Bradford S.A., Shelton D.R., Guber A.K., Dao T. Transport and fate of manure-borne pathogens: Modeling perspective. Agric. Water Manag., 2006, vol. 86, no. 1–2, pp. 81–92. DOI: 10.1016/j.agwat.2006.06.010
  17. Simujide H., Aorigele C., Wang C.-J., Manda B., Lina M., Wu M.-Y., Li Y., Bai T.-R.-G. Reduction of foodborne pathogens during cattle manure composting with addition of calcium cyanamide. J. Environ. Eng. Landsc. Manag., 2013, vol. 21, no. 2, pp. 77–84. DOI: 10.3846/16486897.2012.721373
  18. Goss M.J., Tubeileh A., Goorahoo D. A Review of the use of organic amendments and the risk to human health. Ad-vances in Agronomy, 2013, vol. 120, pp. 275–379. DOI: 10.1016/B978-0-12-407686-0.00005-1
  19. Neher D.A., Weicht T.R., Bates S.T., Leff J.W., Fierer N. Changes in bacterial and fungal communities across compost recipes, preparation methods, and composting times. PLoS One, 2013, vol. 8, no. 11, pp. e79512. DOI: 10.1371/journal.pone.0079512
  20. Pilip L.V., Syrchina N.V. Ekologicheskie riski i prioritety ekologicheskogo razvitiya zhivotnovodstva [Environmental risks and priorities of environmental development of animal husbandry]. Ekologiya rodnogo kraya: problemy i puti ikh resheniya: materialy XVII Vserossiiskoi nauchno-prakticheskoi konferentsii s mezhdunarodnym uchastiem. Kniga 1. Kirov, Vyatka State University Publ., 2022, pp. 56–60 (in Russian).
  21. Létourneau V., Duchaine C., Côté C., Letellier A., Topp E., Massé D. Presence of zoonotic pathogens in physico-chemically characterized manures from hog finishing houses using different production systems. Bioresour. Technol., 2010, vol. 101, no. 11, pp. 4048–4055. DOI: 10.1016/j.biortech.2010.01.009
  22. Teichmann J., Litt P.K., Sharma M., Nyarko E., Kniel K.E. Influence of Poultry Litter Amendment Type and Irrigation Events on Survival and Persistence of Salmonella Newport. J. Food Prot., 2020, vol. 83, no. 5, pp. 821–828. DOI: 10.4315/0362-028X.JFP-19-431
  23. Goberna M., Podmirseg S.M., Waldhuber S., Knapp B.A., García C., Insam H. Pathogenic bacteria and mineral N in soils following the land spreading of biogas digestates and fresh manure. Applied Soil Ecology, 2011, vol. 49, pp. 18–25. DOI: 10.1016/j.apsoil.2011.07.007
  24. Murray R.T., Cruz-Cano R., Nasko D., Blythe D., Ryan P., Boyle M.M., Wilson S.M., Sapkota A.R. Association between private drinking water wells and the incidence of Campylobacteriosis in Maryland: an ecological analysis using Foodborne Diseases Active Surveillance Network (FoodNet) data (2007–2016). Environ. Res., 2020, vol. 188, pp. 109773. DOI: 10.1016/j.envres.2020.109773
  25. Radon K., Schulze A., Ehrenstein V., van Strien R.T., Praml G., Nowak D. Environmental exposure to confined animal feeding operations and respiratory health of neighboring residents. Epidemiology, 2007, vol. 18, no. 3, pp. 300–308. DOI: 10.1097/01.ede. 0000259966.62137.84
  26. Smit L.A.M., Boender G.J., de Steenhuijsen Piters W.A.A., Hagenaars T.J., Huijskens E.G.W., Rossen J.W.A., Koopmans M., Nodelijk G. [et al.]. Increased risk of pneumonia in residents living near poultry farms: does the upper respiratory tract microbiota play a role? Pneumonia (Nathan), 2017, vol. 9, pp. 3. DOI: 10.1186/s41479-017-0027-0
  27. Hooiveld M., Smit L.A.M., van der Sman-de Beer F., Wouters I.M., van Dijk C.E., Spreeuwenberg P., Heederik D.J.J., Yzermans C.J. Doctor-diagnosed health problems in a region with a high density of concentrated animal feeding operations: a cross-sectional study. Environ. Health, 2016, vol. 15, pp. 24. DOI: 10.1186/s12940-016-0123-2
  28. Kalkowska D.A., Boender G.J., Smit L.A.M., Baliatsas C., Yzermans J., Heederik D.J.J., Hagenaars T.J. Associations between pneumonia and residential distance to livestock farms over a five-year period in a large population-based study. PLoS One, 2018, vol. 13, no. 7, pp. e0200813. DOI: 10.1371/journal.pone.0200813
  29. Kouimintzis D., Chatzis C., Linos A. Health effects of livestock farming in Europe. J. Public Health, 2007, vol. 15, pp. 245–254. DOI: 10.1007/s10389-007-0130-4
  30. Economou V., Gousia P. Agriculture and food animals as a source of antimicrobial-resistant bacteria. Infect. Drug Re-sist., 2015, vol. 8, pp. 49–61. DOI: 10.2147/IDR.S55778
  31. D'Costa V.M., McGrann K.M., Hughes D.W., Wright G.D. Sampling the antibiotic resistome. Science, 2006, vol. 311, no. 5759, pp. 374–377. DOI: 10.1126/science.1120800
  32. Xu L., Wang W., Xu W. Effects of tetracycline antibiotics in chicken manure on soil microbes and antibiotic resistance genes (ARGs). Environ. Geochem. Health, 2022, vol. 44, no. 1, pp. 273–284. DOI: 10.1007/s10653-021-01004-y
  33. Awasthi M.K., Liu T., Chen H., Verma S., Duan Y., Awasthi S.K., Wang Q., Ren X. [et al.]. The behavior of antibiotic resistance genes and their associations with bacterial community during poultry manure composting. Bioresour. Technol., 2019, vol. 280, pp. 70–78. DOI: 10.1016/j.biortech.2019.02.030
  34. Danilova N.V., Galitskaya P.Y., Selivanovskaya S.Y. Multiresistance of bacteria to veterinary antibiotics in dung and manure samples of farm animals. Uchenye zapiski Kazanskogo universiteta. Seriya: Estestvennye nauki, 2016, vol. 158, no. 4, pp. 507–516 (in Russian).
  35. He L.-Y., He L.-K., Liu Y.S., Zhang M., Zhao J.-L., Zhang Q.-Q., Ying G.-G. Microbial diversity and antibiotic resis-tome in swine farm environments. Science of the Total Environment, 2019, vol. 685, pp. 197–207. DOI: 10.1016/j.scitotenv.2019.05.369
  36. Zhu Y.-G., Johnsonc T.A., Su J.-G., Qiao M., Guo G.-X., Stedtfeld R.D., Hashsham S.A., Tiedje J.M. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc. Natl Acad. Sci. USA, 2012, vol. 110, no. 9, pp. 3435–3440. DOI: 10.1073/pnas.1222743110
  37. Gao L., Hu J., Zhang X., Wei L., Li S., Miao Z., Chai T. Application of swine manure on agricultural fields contributes to extended-spectrum β-lactamase-producing Escherichia coli spread in Tai’an, China. Front. Microbiol., 2015, vol. 6, pp. 313. DOI: 10.3389/fmicb.2015.00313
  38. Hall M.C., Mware N.A., Gilley J.A., Bartelt-Hunt S.L., Snow D.D., Schmidt A.M., Eskridge K.M., Li X. Influence of setback distance on antibiotics and antibiotic resistance genes in runoff and soil following the land application of swine manure slurry. Environ. Sci. Technol., 2020, vol. 54, no. 8, pp. 4800–4809. DOI: 10.1021/acs.est.9b04834
  39. Binh C.T., Heuer H., Kaupenjohann M., Smalla K. Piggery manure used for soil fertilization is a reservoir for trans-ferable antibiotic resistance plasmids. FEMS Microbiol. Ecol., 2008, vol. 66, no. 1, pp. 25–37. DOI: 10.1111/j.1574-6941.2008.00526.x
  40. Yoon S.H., Park Y.-K., Kim J.F. PAIDB v2.0: exploration and analysis of pathogenicity and resistance islands. Nucleic Acids Res., 2015, vol. 43, database issue, pp. D624–D630. DOI: 10.1093/nar/gku985
  41. Meneghine A.K., Nielsen S., Varani A.M., Thomas T., Carareto Alves L.M. Metagenomic analysis of soil and freshwater from zoo agricultural area with organic fertilization. PLoS One, 2017, vol. 12, no. 12, pp. e0190178. DOI: 10.1371/journal.pone.0190178
  42. Heuer H., Schmitt H., Smalla K. Antibiotic resistance gene spread due to manure application on agricultural fields. Curr. Opin. Microbiol., 2011, vol. 14, no. 3, pp. 236–243. DOI: 10.1016/j.mib.2011.04.009
  43. Sales of veterinary antimicrobial agents in 31 European countries in 2019 and 2020. Trends from 2010 to 2020. Eleventh ESVAC report. Luxembourg, Publications Office of the European Union, 2021, 129 p. DOI: 10.2809/636389
  44. Sarmah A.K., Meyer M.T., Boxall A.B.A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere, 2006, vol. 65, no. 5, pp. 725–759. DOI: 10.1016/j.chemosphere.2006.03.026
  45. Yang Q., Gao Y., Ke J., Show P.L., Ge Y., Liu Y., Guo R., Chen J. Antibiotics: An overview on the environmental occurrence, toxicity, degradation, and removal methods. Bioengineered, 2021, vol. 12, no. 1, pp. 7376–7416. DOI: 10.1080/21655979.2021.1974657
  46. Berendsen B.J.A., Wegh R.S., Memelink J., Zuidema T., Stolker L.A.M. The analysis of animal faeces as a tool to monitor antibiotic usage. Talanta, 2015, vol. 132, pp. 258–268. DOI: 10.1016/j.talanta.2014.09.022
  47. Zhang H., Luo Y., Wu L., Huang Y., Christie P. Residues and potential ecological risks of veterinary antibiotics in manures and composts associated with protected vegetable farming. Environ. Sci. Pollut. Res. Int., 2015, vol. 22, no. 8, pp. 5908–5918. DOI: 10.1007/s11356-014-3731-9
  48. Ghirardini A., Grillini V., Verlicchi P. A review of the occurrence of selected micropollutants and microorganisms in different raw and treated manure –Environmental risk due to antibiotics after application to soil. Sci. Total Environ., 2020, vol. 707, pp. 136118. DOI: 10.1016/j.scitotenv.2019.136118
  49. Solliec M., Roy-Lachapelle A., Gasser M.-O., Coté C., Généreux M., Sauvé S. Fractionation and analysis of veterinary antibiotics and their related degradation products in agricultural soils and drainage waters following swine manure amendment. Sci. Total Environ., 2016, vol. 543, pt A, pp. 524–535. DOI: 10.1016/j.scitotenv.2015.11.061
  50. Pan M., Wong C.K.C., Chu L.M. Distribution of antibiotics in wastewater-irrigated soils and their accumulation in vegetable crops in the Pearl River Delta, southern China. J. Agric. Food Chem., 2014, vol. 62, no. 46, pp. 11062–11069. DOI: 10.1021/jf503850v
  51. Wei R., Ge F., Zhang L., Hou X., Cao Y., Gong L., Chen M., Wang R., Bao E. Occurrence of 13 veterinary drugs in animal manure-amended soils in Eastern China. Chemosphere, 2016, vol. 144, pp. 2377–2383. DOI: 10.1016/j.chemosphere.2015.10.126
  52. Cogliani C., Goosens H., Greko C. Restricting antimicrobial use in food animals: Lessons from Europe: Banning non-essential antibiotic uses in food animals is intended to reduce pools of resistance genes. Microbe Magazine, 2011, vol. 6, pp. 274–279. DOI: 10.1128/microbe.6.274.1
  53. Wang H., Dong Y., Yang Y., Toor G.S., Zhang X. Changes in heavy metal contents in animal feeds and manures in an intensive animal production region of China. J. Environ. Sci. (China), 2013, vol. 25, no. 12, pp. 2435–2442. DOI: 10.1016/S1001-0742(13)60473-8
  54. Liu W.-R., Zenga D., She L., Su W.-X., He D.-C., Wu G.-Y., Ma X.-R., Jiang S. [et al.]. Comparisons of pollution characteristics, emission situations, and mass loads for heavy metals in the manures of different livestock and poultry in China. Sci. Total Environ., 2020, vol. 734, pp. 139023. DOI: 10.1016/j.scitotenv.2020.139023
  55. Mitra S., Chakraborty A.J., Tareq A.M., Emran T.B., Nainu F., Khusro A., Idris A.M., Khandaker M.U. [et al.]. Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. Journal of King Saud University – Science, 2022, vol. 34, no. 3, pp. 101865. DOI: 10.1016/j.jksus.2022.101865
  56. Rashid A., Schutte B.J., Ulery A., Deyholos M.K., Sanogo S., Lehnhoff E.A., Beck L. Heavy metal contamination in agricultural soil: environmental pollutants affecting crop health. Agronomy, 2023, vol. 13, no. 6, pp. 1521. DOI: 10.3390/agronomy13061521
  57. Gans J., Wolinsky M., Dunbar J. Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science, 2005, vol. 309, no. 5739, pp. 1387–1390. DOI: 10.1126/science.1112665
  58. Jensen J., Larsen M.M., Bak J. National monitoring study in Denmark finds increased and critical levels of copper and zinc in arable soils fertilized with pig slurry. Environ. Pollut., 2016, vol. 214, pp. 334–340. DOI: 10.1016/j.envpol.2016.03.034
  59. Hu Y., Zhang W., Chen G., Cheng H., Tao S. Public health risk of trace metals in fresh chicken meat products on the food markets of a major production region in southern China. Environ. Pollut., 2018, vol. 234, pp. 667–676. DOI: 10.1016/j.envpol.2017.12.006
  60. Panagos P., Imeson A., Meusburger K., Borrelli P., Poesen J., Alewell C. Soil conservation in Europe: wish or reality? Land Degrad. Dev., 2016, vol. 27, no. 6, pp. 1547–1551. DOI: 10.1002/ldr.2538
  61. Lopes C., Herva M., Franco-Uría A., Roca E. Inventory of heavy metal content in organic waste applied as fertilizer in agriculture: Evaluating the risk of transfer into the food chain. Environ. Sci. Pollut. Res. Int., 2011, vol. 18, no. 9, pp. 918–939. DOI: 10.1007/s11356-011-0444-1
  62. Reczek C.R., Chandel N.S. The two faces of reactive oxygen species in cancer. Ann. Rev. Cancer Biol., 2017, vol. 1, no. 1, pp. 79–98. DOI: 10.1146/annurev-cancerbio-041916-065808
  63. Lora V., Grings A.O., Capp E., von Eye Corleta H., Brum I.S. Gene and protein expression of progesterone receptor isoforms A and B, p53 and p21 in myometrium and uterine leiomyoma. Arch. Gynecol. Obstet., 2012, vol. 286, no. 1, pp. 119–124. DOI: 10.1007/s00404-012-2245-2
  64. Committee to Review the IRIS Process, Board on Environmental Studies and Toxicology, Division on Earth and Life Studies, National Research Council. Review of EPA's integrated risk information system (IRIS) process. Washington (DC), National Academies Press Publ., 2014. DOI: 10.17226/18764
  65. Grout L., Hales S., French N., Baker M.G. A Review of methods for assessing the environmental health impacts of an agricultural system. Int. J. Environ. Res. Public Health, 2018, vol. 15, no. 7, pp. 1315. DOI: 10.3390/ijerph15071315
  66. Onishchenko G.G., Novikov S.M. Osnovy otsenki riska dlya zdorov'ya naseleniya pri vozdeistvii khimicheskikh veshchestv, zagryaznyayushchikh okruzhayushchuyu sredu [Fundamentals of assessing health risks upon exposure to chemical pollutants in the environment]. Moscow, Research Institute of Environmental Protection and State Environmental Protection Publ., 2002, 408 p. (in Russian).
  67. Rakhmanin Yu.A., Dodina N.S., Alekseeva A.V. Modern methodological approaches to assessing public health risks due to chemicals exposure. Health Risk Analysis, 2023, no. 4, pp. 33–41. DOI: 10.21668/health.risk/2023.4.03.eng
Received: 
11.10.2024
Approved: 
28.11.2024
Accepted for publication: 
19.12.2024

You are here