Assessing potential hazard of zinc oxide nanoparticles to human health
М.S. Stepankov1, М.А. Zemlyanova1,2
1Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, 82 Monastyrskaya St., Perm, 614045, Russian Federation
2Perm State University, 15 Bukireva St., Perm, 614068, Russian Federation
Wide implementation of nanomaterials in various economic activities and associated contamination of environmental objects create health risks for workers and general population. Nanoparticles have physiochemical properties that are different from their micro-sized analogues, which may cause more pronounced negative effects upon intake. In this regard, assessment of safety of nanoindustry products is an urgent hygienic problem and the basis for developing recommendations aimed at minimizing health risks.
The aim of the study was to assess potential hazards of a nanomaterial for human health using zinc oxide nanoparticles (ZnO NPs) as an example.
Potential hazard of ZnO NPs was assessed using a set of indicators based on implementation of the predictive-analytical procedure in accordance with MR 1.2.2522-09.
The analysis of ZnO NPs properties indicates that they belong to nano-sized particles (from 6 to 100 nanometers). During cell membrane penetration, ZnO NPs were shown to stimulate greater production of free radicals that cause damage to supramolecular structures. They transform proteomic profile and metabolic reactions changing the expression of proteins that regulate the integrity of cytoskeleton, nuclear matrix and apoptotic process, which leads to cell death. Cellular and molecular changes are manifested through morphofunctional tissue impairments in tissues organs where ZnO NPs bioaccumulate (the liver, kidneys and lungs). Negative effects are manifested as redox imbalance, cytolysis, impaired filtration processes, weaker cellular immunity and, as a consequence, developing inflammatory, dystrophic and necrotic processes. Implementation of the predictive-analytical procedure showed that ZnO NPs are potentially highly hazardous for human health (according to the hazard coefficient D = 2.102).
High potential hazard for human health indicates that it is necessary to investigate remote and specific effects of ZnO NPs in order to perform complete hygienic assessment of their safe levels. This will allow achieving more effective development of preventive measures aimed at minimizing health risks caused by ZnO NPs for workers and general population.
- Adekoya J.A., Ogunniran K.O., Siyanbola T.O., Dare E.O., Revaprasadu N. Band structure, morphology, functio¬nality, and size- dependent properties of metal nanoparticles. In book: Noble and precious metals – properties, nanoscale effects and applications; M.S. Seehra, A.D. Bristow eds., 2018, pp. 15–42. DOI: 10.5772/intechopen.72761
- Sukhanova A., Bozrova S., Sokolov P., Berestovoy M., Karaulov A., Nabiev I. Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Res. Lett., 2018, vol. 13, no. 1, pp. 44. DOI: 10.1186%2Fs11671-018-2457-x
- Bala N., Saha S., Chakraborty M., Maiti M., Das S., Basub R., Nandy P. Green synthesis of zinc oxide nano¬particles using Hibiscus subdariffa leaf extract: effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity. RCS Advances, 2015, vol. 5, no. 7, pp. 4993–5003. DOI: 10.1039/C4RA12784F
- Adil M., Bashir S., Bashir S., Aslam Z., Ahmad N., Younas T., Asghar R.M.A., Alkahtani J. [et al.]. Zinc oxide nanoparticles improved chlorophyll contents, physical parameters, and wheat yield under salt stress. Front. Plant. Sci., 2022, vol. 13, pp. 932861. DOI: 10.3389/fpls.2022.932861
- Gauba A., Hari S.K., Ramamoorthy V., Vellasamy S., Govindan G., Arasu M.V. The versatility of green synthesized zinc oxide nanoparticles in sustainable agriculture: A review on metal-microbe interaction that rewards agriculture. Physiological and Molecular Plant Pathology, 2023, vol. 125, pp. 102023. DOI: 10.1016/j.pmpp.2023.102023
- Youn S.-M., Choi S.-J. Food additive zinc oxide nanoparticles: dissolution, interaction, fate, cytotoxicity, and oral toxicity. Int. J. Mol. Sci., 2022, vol. 23, no. 11, pp. 6074. DOI: 10.3390/ijms23116074
- Espitia P.J.P., Otoni C.G., Soares N.F.F. Zinc oxide nanoparticles for food packaging applications. In book: Antimicrobial Food Packaging; J. Barros-Velázquez ed. Elsevier, 2016, pp. 425–431. DOI: 10.1016/B978-0-12-800723-5.00034-6
- Nisansala H.M.D., Rajapaksha G.K.M., Dikella D.G.N.V., Dheerasinghe M.J., Sirimuthu N.M.S., Patabendige C.N.K. Zinc oxide nanostructures in the textile industry. Indian Journal of Science and Technology, 2021, vol. 14, no. 46, pp. 3370–3395. DOI: 10.17485/IJST/v14i46.1052
- Rahman H.S., Othman H.H., Abdullah R., Edin H.Y.A.S., Al-Haj N.A. Beneficial and toxicological aspects of zinc oxide nanoparticles in animals. Vet. Med. Sci., 2022, vol. 8, no. 4, pp. 1769–1779. DOI: 10.1002/vms3.814
- Zemlyanova M.A., Zaitseva N.V., Stepankov M.S. Research and assessment of the molybdenum oxide (VI) nanoparticles toxicity under inhalation in Wistar line rats in comparison with the micro-sized chemical analog. Gigiena i sanitariya, 2023, vol. 102, no. 10, pp. 1119–1124. DOI: 10.47470/0016-9900-2023-102-10-1119-1124 (in Russian).
- Stepankov M.S. Peculiarities of bioaccumulation and toxic effects produced by copper oxide (II) nanoparticles on the respiratory organs under inhalation exposure as opposed to their micro-sized chemical analogue: assessment for prevention purposes. Health Risk Analysis, 2023, no. 4, pp. 124–133. DOI: 10.21668/health.risk/2023.4.12.eng
- Cho W.-S., Kang B.-C., Lee J.K., Jeong J., Che J.-H., Seok S.H. Comparative absorption, distribution, and excretion of titanium dioxide and zinc oxide nanoparticles after repeated oral administration. Part. Fibre Toxicol., 2013, vol. 10, pp. 9. DOI: 10.1186/1743-8977-10-9
- Yu J., Kim H.-J., Go M.-R., Bae S.-H., Choi S.-J. ZnO Interactions with biomatrices: effect of particle size on ZnO-protein corona. Nanomaterials (Basel), 2017, vol. 7, no. 11, pp. 377. DOI: 10.3390/nano7110377
- Zhang F., Chen X., Wu F., Ji Y. High adsorption capability and selectivity of ZnO nanoparticles for dye removal. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, vol. 509, pp. 474–483. DOI: 10.1016/j.colsurfa.2016.09.059
- Zhang F., Lan J., Yang Y., Wei T., Tan R., Song W. Adsorption behavior and mechanism of methyl blue on zinc oxide nanoparticles. J. Nanopart. Res., 2013, vol. 15, no. 11, pp. 2034. DOI: 10.1007/s11051-013-2034-2
- Baek M., Chung H.-E., Yu J., Lee J.-A., Kim T.-H., Oh J.-M., Lee W.-J., Paek S.-M. [et al.]. Pharmacokinetics, tissue distribution, and excretion of zinc oxide nanoparticles. Int. J. Nanomedicine, 2012, vol. 7, pp. 3081–3097. DOI: 10.2147/IJN.S32593
- Wang L., Wang L., Ding W., Zhang F. Acute toxicity of ferric oxide and zinc oxide nanoparticles in rats. J. Nanosci. Nanotechnol., 2010, vol. 10, no. 12, pp. 8617–8624. DOI: 10.1166/jnn.2010.2483
- Czyzowska A., Barbasz A., Rudilphi-Szydlo E., Dyba B. The cell membrane as the barrier in the defense against nanoxenobiotics: Zinc oxide nanoparticles interactions with native and model membrane of melanoma cells. J. Appl. Toxicol., 2022, vol. 42, no. 2, pp. 334–341. DOI: 10.1002/jat.4216
- Sharma V., Anderson D., Dhawan A. Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2). Apoptosis, 2012, vol. 17, no. 8, pp. 852–870. DOI: 10.1007/s10495-012-0705-6
- Liu Z., Lv X., Xu L., Liu X., Zhu X., Song E., Song Y. Zinc oxide nanoparticles effectively regulate autophagic cell death by activating autophagosome formation and interfering with their maturation. Part. Fibre Toxicol., 2020, vol. 17, no. 1, pp. 46. DOI: 10.1186/s12989-020-00379-7
- Choudhury S.R., Ordaz J., Lo C.-L., Damayanti N.P., Zhou F., Irudayaraj J. From the cover: zinc oxide nanoparticles-induced reactive oxygen species promotes multimodal cyto- and epigenetic toxicity. Toxicol. Sci., 2017, vol. 156, no. 1, pp. 261–274. DOI: 10.1093/toxsci/kfw252
- Jain A.K., Singh D., Dubey K., Maurya R., Pandey A.K. Zinc oxide nanoparticles induced gene mutation at the HGPRT locus and cell cycle arrest associated with apoptosis in V-79 cells. J. Appl. Toxicol., 2019, vol. 39, no. 5, pp. 735–750. DOI: 10.1002/jat.3763
- Attia H., Nounou H., Shalaby M. Zinc oxide nanoparticles induced oxidative DNA damage, inflammation and apoptosis in rat’s brain after oral exposure. Toxics, 2018, vol. 6, no. 2, pp. 29. DOI: 10.3390/toxics6020029
- Kukla S.P., Chelomin V.P., Mazur A.A., Slobodskova V.V. Zinc oxide nanoparticles induce DNA damage in sand dollar Scaphechinus mirabilis sperm. Toxics, 2022, vol. 10, no. 7, pp. 348. DOI: 10.3390/toxics10070348
- Singh K.P., Dhasmana A., Rahman Q. Elucidation the toxicity mechanism of zinc oxide nanoparticle using molecular docking approach with proteins. Asian Journal of Pharmaceutical and Clinical Research, 2018, vol. 11, no. 3, pp. 441–446. DOI: 10.22159/ajpcr.2018.v11i3.23384
- Singh R., Cheng S., Singh S. Oxidative stress-mediated genotoxic effect of zinc oxide nanoparticles on Deinococcus radiodurans. 3 Biotech, 2020, vol. 10, no. 2, pp. 66. DOI: 10.1007/s13205-020-2054-4
- Babele P.K. Zinc oxide nanoparticles impose metabolic toxicity by de-regulating proteome and metabolome in Saccharomyces cerevisiae. Toxicol. Rep., 2019, vol. 6, pp. 64–73. DOI: 10.1016/j.toxrep.2018.12.001
- Hsiao I.-L., Huang Y.-J. Effects of various physicochemical characteristics on the toxicities of ZnO and TiO nanoparticles toward human lung epithelial cells. Sci. Total Environ., 2011, vol. 409, no. 7, pp. 1219–1228. DOI: 10.1016/j.scitotenv.2010.12.033
- Pinho A.R., Martins F., Costa M.E.V., Senos A.M.R., da Cruz E Silva O.A.B., de Lourdes Pereira M., Rebelo S. In vitro cytotoxicity effects of zinc oxide nanoparticles on spermatogonia cells. Cells, 2020, vol. 9, no. 5, pp. 1081. DOI: 10.3390/cells9051081
- Almansour M.I., Alferah M.A., Shraideh Z.A., Jarrar B.M. Zinc oxide nanoparticles hepatotoxicity: histological and histochemical study. Environ. Toxicol. Pharmacol., 2017, vol. 51, pp. 124–130. DOI: 10.1016/j.etap.2017.02.015
- Pei X., Jiang H., Xu G., Li C., Li D., Tang S. Lethality of zinc oxide nanoparticles surpasses conventional zinc oxide via oxidative stress, mitochondrial damage and calcium overload: a comparative hepatotoxicity study. Int. J. Mol. Sci., 2022, vol. 23, no. 12, pp. 6724. DOI: 10.3390/ijms23126724
- Yan G., Huang Y., Bu Q., Lv L., Deng P., Zhou J., Wang Y., Yang Y. [et al.]. Zinc oxide nanoparticles cause nephrotoxicity and kidney metabolism alterations in rats. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng., 2012, vol. 47, no. 4, pp. 577–588. DOI: 10.1080/10934529.2012.650576
- Guo T., Fang X., Liu Y., Ruan Y., Hu Y., Wang X., Hu Y., Wang G., Xu Y. Acute lung inflammation induced by zinc oxide nanoparticles: evolution and intervention via NRF2 activator. Food Chem. Toxicol., 2022, vol. 162, pp. 112898. DOI: 10.1016/j.fct.2022.112898
- Kim C.-S., Nguyen H.-D., Ignacio R.M., Kim J.-H., Cho H.-C., Maeng E.H., Kim Y.-R., Kim M.-K. [et al.]. Immunotoxicity of zinc oxide nanoparticles with different size and electrostatic charge. Int. J. Nanomedicine, 2014, vol. 9, suppl. 2, pp. 195–205. DOI: 10.2147/ijn.s57935
- Li D., Li Y., Li G., Zhang Y., Li J., Chen H. Fluorescent reconstitution on deposition of PM2.5 in lung and extrap-ulmonary organs. Proc. Natl Acad. Sci. USA, 2019, vol. 116, no. 7, pp. 2488–2493. DOI: 10.1073/pnas.1818134116