Assessing the risk of negative effects produced by electromagnetic fields of cellular communication on the central nervous system of children and adolescents (Review). Part 2. Indicators of cognitive processes

View or download the full article: 
UDC: 
57.042+57.049+614
Authors: 

N.I. Khorseva1, P.E. Grigoriev2,3

Organization: 

1Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 4 Kosygina St., Moscow, 119334, Russian Federation
2Sevastopol State University, 33 Universitetskaya St., Sevastopol, 299053, Russian Federation
3Academic Research Institute of Physical Methods of Treatment, Medical Climatology and Rehabilitation named after I.M. Sechenov, 10/3 Mukhina St., Yalta, Republic of Crimea, 298603, Russian Federation

Abstract: 

This paper continues the authors’ review that dwells on modeling radiofrequency electromagnetic fields (RF EMF) and results obtained by measuring electroencephalography indicators, sensorimotor reactions, fatigue, work capacity, duration of an individual minute and the reproduction of a given rhythm in children and adolescents.

Health risk assessment is always based on data obtained by either laboratory tests or epidemiological studies. This paper analyses publications that describe effects of RF EMF exposure, including Wi-Fi, on cognitive processes in children and adolescents as well as methodical approaches to investigating this exposure. However, there are few such studies; in particular, effects produced by Wi-Fi exposure on cognitive indicators of adolescents aged 14–17 years, were found only in two publications.

Literature analysis has established that research findings do not always give an unambiguous estimation of RF EMF effects. The review covers the reasons for ambiguous interpretation of research results: a variable range of test-systems used for investigating indicators of cognitive processes; simultaneous analysis of single exposures including descriptions of ‘effect of improvement’ in indicators; changes in cognitive indicators registered for a group of children and adolescents in a wide age range.

Nevertheless, most results give evidence of negative changes in attention and memory of children and adolescents. Given that, longitudinal studies are becoming especially relevant since they estimate changes in various indicators in dynamics, including those induced by changes in mobile phone use. The review highlights the relevance of comprehensive investigations with their focus on health outcomes of RF EMF exposure intrinsic to 5G technologies considering their global implementation.

Keywords: 
radiofrequency electromagnetic field, Wi-Fi, central nervous system, brain, attention, memory, children, adolescents
Khorseva N.I., Grigoriev P.E. Assessing the risk of negative effects produced by electromagnetic fields of cellular com-munication on the central nervous system of children and adolescents (review). Part 2. Indicators of cognitive processes. Health Risk Analysis, 2024, no. 3, pp. 146–154. DOI: 10.21668/health.risk/2024.3.15.eng
References: 
  1. Warille A.A., Onger M.E., Turkmen A.P., Deniz Ö.G., Altun G., Yurt K.K., Altunkaynak B.Z., Kaplan S. Controver-sies on electromagnetic field exposure and the nervous systems of children. Histol. Histopathol., 2016, vol. 31, no. 5, pp. 461–468. DOI: 10.14670/HH-11-707
  2. Bodewein L., Dechent D., Graefrath D., Kraus T., Krause T., Driessen S. Systematic review of the physiological and health-related effects of radiofrequency electromagnetic field exposure from wireless communication devices on children and adolescents in experimental and epidemiological human studies. PLoS One, 2022, vol. 17, no. 6, pp. e0268641. DOI: 10.1371/journal.pone.0268641
  3. Ishihara T., Yamazaki K., Araki A., Teraoka Y., Tamura N., Hikage T., Omiya M., Mizuta M., Kishi R. Exposure to Radiofrequency Electromagnetic Field in the High-Frequency Band and Cognitive Function in Children and Adolescents: A Literature Review. Int. J. Environ. Res. Public Health, 2020, vol. 17, no. 24, pp. 9179. DOI: 10.3390/ijerph17249179
  4. Moon J.-H. Health effects of electromagnetic fields on children. Clin. Exp. Pediatr., 2020, vol. 63, no. 11, pp. 422–428. DOI: 10.3345/cep.2019.01494
  5. Sage C., Burgio E. Electromagnetic Fields, Pulsed Radiofrequency Radiation, and Epigenetics: How Wireless Tech-nologies May Affect Childhood Development. Child Dev., 2018, vol. 89, no. 1, pp. 129–136. DOI: 10.1111/cdev.12824
  6. Grimes D.R., Bishop D.V.M. Distinguishing Polemic From Commentary in Science: Some Guidelines Illustrated With the Case of Sage and Burgio. Child Dev., 2018, vol. 89, no. 1, pp. 141–147. DOI: 10.1111/cdev.13013
  7. Vyatleva O.A. Influence of use of smartphons on well-being, cognitive functions and morphofunctional state of the central nervous system in children and adolescents (review). Voprosy shkol'noi i universitetskoi meditsiny i zdorov'ya, 2020, no. 1, pp. 4–11 (in Russian).
  8. Ferreira J., Almeida de Salles A.A. Specific Absorption Rate (SAR) in the head of Tablet users. The 7Th IEEE Latin-American Conference on Communications (Latincom 2015), 2015, vol. 1538, pp. 5–9.
  9. Fernández, C., de Salles A.A., Sears M.E., Morris R.D., Davis D.L. Absorption of wireless radiation in the child versus adult brain and eye from cell phone conversation or virtual reality. Environ. Res., 2018, vol. 167, pp. 694–699. DOI: 10.1016/j.envres.2018.05.013
  10. Hofferth S.L., Moon U.J. Cell Phone Use and Child and Adolescent Reading Proficiency. Psychol. Pop. Media Cult., 2012, vol. 1, no. 2, pp. 108–122. DOI: 10.1037/a0027880
  11. Zheng F., Gao P., He M., Li M., Wang C., Zeng Q., Zhou Z., Yu Z., Zhang L. Association between mobile phone use and inattention in 7102 Chinese adolescents: A population-based cross-sectional study. BMC Public Health, 2014, vol. 14, pp. 1022. DOI: 10.1186/1471-2458-14-1022
  12. Barth A., Winker R., Ponocny-Seliger E., Mayrhofer W., Ponocny I., Sauter C., Vana N. A meta-analysis for neuro-behavioural effects due to electromagnetic field exposure emitted by GSM mobile phones. Occup. Environ. Med., 2008, vol. 65, no. 5, pp. 342–346. DOI: 10.1136/oem.2006.031450
  13. Brzozek C., Benke K.K., Zeleke B.M., Croft R.J., Dalecki A., Dimitriadis C., Kaufman J., Sim M.R. [et al.]. Uncertainty Analysis of Mobile Phone Use and Its Effect on Cognitive Function: The Application of Monte Carlo Simulation in a Cohort of Australian Primary School Children Int. J. Environ. Res. Public Health, 2019, vol. 16, no. 13, pp. 2428. DOI: 10.3390/ijerph16132428
  14. Deniz O.G., Kaplan S., Selçuk M.B., Terzi M., Altun G., Yurt K.K., Aslan K., Davis D. Effects of short and long term electromagnetic fields exposure on the human hippocampus. J. Microsc. Ultrastruct., 2017, vol. 5, no. 4, pp. 191–197. DOI: 10.1016/j.jmau.2017.07.001
  15. Guxens M., Vermeulen R., van Eijsden M., Beekhuizen J., Vrijkotte T.G.M., van Strien R.T., Kromhout H., Huss A. Outdoor and indoor sources of residential radiofrequency electromagnetic fields, personal cell phone and cordless phone use, and cognitive function in 5-6 years old children. Environ. Res., 2016, vol. 150, pp. 364–374. DOI: 10.1016/j.envres.2016.06.021
  16. Verrender A., Loughran S.P., Dalecki A., McKenzie R., Croft R.J. Pulse modulated radiofrequency exposure influences cognitive performance. Int. J. Radiat. Biol., 2016, vol. 92, no. 10, pp. 603–610. DOI: 10.1080/09553002.2016.1213454
  17. Abramson M.J., Benke G.P., Dimitriadis C., Inyang I.O., Sim M.R., Wolfe R.S., Croft R.J. Mobile telephone use is associated with changes in cognitive function in young adolescents. Bioelectromagnetics, 2009, vol. 30, no. 8, pp. 678–686. DOI: 10.1002/bem.20534
  18. Thomas S., Benke G., Dimitriadis C., Inyang I., Sim M.R., Wolfe R., Croft R.J., Abramson M.J. Use of mobile phones and changes in cognitive function in adolescents. Оccup. Environ. Med., 2010, vol. 67, no. 12, pp. 861–866. DOI: 10.1136/oem.2009.054080
  19. Movvahedi M.M., Tavakkoli-Golpayegani A., Mortazavi S.A., Haghani M., Razi Z., Shojaie-Fard M.B., Zare M., Mina E. [et al.]. Does exposure to GSM 900 MHz mobile phone radiation affect short-term memory of elementary school students? J. Pediatr. Neurosci., 2014, vol. 9, no. 2, pp. 121–124. DOI: 10.4103/1817-1745.139300
  20. Schoeni A., Roser K., Röösli M. Memory performance, wireless communication and exposure to radiofrequency electromagnetic fields: A prospective cohort study in adolescents. Environ. Int., 2015, vol. 85, pp. 343–351. DOI: 10.1016/j.envint.2015.09.025
  21. Redmayne M., Smith C.L., Benke G., Croft R.J., Dalecki A., Dimitriadis C., Kaufman J., Macleod S. [et al.]. Use of mobile and cordless phones and cognition in Australian primary school children: a prospective cohort study. Environ. Health, 2016, vol. 15, pp. 26. DOI: 10.1186/s12940-016-0116-1
  22. Calvente I., Pérez-Lobato R., Núñez M.-I., Ramos R., Guxens M., Villalba J., Olea N., Fernández M.F. Does exposure to environmental radiofrequency electromagnetic fields cause cognitive and behavioral effects in 10-year-old boys? Bioe-lectromagnetics, 2016, vol. 37, no. 1, pp. 25–36. DOI: 10.1002/bem.21951
  23. Foerster M., Thielens A., Joseph W., Eeftens M., Röösli M. A prospective cohort study of adolescents’ memory per-formance and individual brain dose of microwave radiation from wireless communication. Environ. Health Perspect., 2018, vol. 126, no. 7, pp. 077007. DOI: 10.1289/EHP2427
  24. Bhatt C.R., Benke G., Smith C.L., Redmayne M., Dimitriadis C., Dalecki A., Macleod S., Sim M.R. [et al.]. Use of mobile and cordless phones and change in cognitive function: A prospective cohort analysis of Australian primary school children. Environ. Health, 2017, vol. 16, no. 1, pp. 62. DOI: 10.1186/s12940-017-0250-4
  25. Vyatleva O.A., Kurgansky A.M. Features of using of mobile communication (intensity of radiation, temporary modes) and their influence on the health of modern younger schoolchildren. ZNiSO, 2018, no. 8 (305), pp. 51–54 (in Russian).
  26. Lee A.V. Vliyanie mobil'nykh i mul'timediinykh ustroistv na kognitivnye funktsii podrostkov [Influence of mobile and multimedia devices on the cognitive functions of adolescents]. Bulletin of Medical Internet Conferences, 2015, vol. 5, no. 5, pp. 760 (in Russian).
  27. Grigoriev Yu.G., Khorseva N.I. Mobil'naya svyaz' i zdorov'e detei. Otsenka opasnosti primeneniya mobil'noi svyazi det'mi i podrostkami. Rekomendatsii detyam i roditelyam [Mobile communication and children health. Assessment of the hazard posed by mobile communications for children and teenagers. Recommendations for children and parents]. Moscow, Ekonomika Publ., 2014, 230 p. (in Russian).
  28. Grigoriev Yu.G., Khorseva N.I. A Longitudinal Study of Psychophysiological Indicators in Pupils Users of Mobile Communications in Russia (2006–2017). In book: Mobile Communications and Public Health. In: M. Markov ed. Boca Raton, CRC Press Publ., 2019, pp. 237–253.
  29. Keetley V., Wood A.W., Spong J., Stough C. Neuropsychological sequelae of digital mobile phone exposure in hu-mans. Neuropsychologia, 2006, vol. 44, no. 10, pp. 1843–1848. DOI: 10.1016/j.neuropsychologia.2006.03.002
  30. Meo S.A., Almahmoud M., Alsultan Q., Alotaibi N., Alnajashi I., Hajjar W.M. Mobile Phone Base Station Tower Settings Adjacent to School Buildings: Impact on Students' Cognitive Health. Am. J. Mens Health, 2019, vol. 13, no. 1, pp. 1557988318816914. DOI: 10.1177/1557988318816914
  31. Cabré-Riera A., van Wel L., Liorni I., Thielens A., Birks L.E., Pierotti L., Joseph W., González-Safont L. [et al.]. As-sociation between estimated whole-brain radiofrequency electromagnetic fields dose and cognitive function in preadolescents and adolescents. Int. J. Hyg, Environ, Health, 2021, vol. 231, pp. 113659. DOI: 10.1016/j.ijheh.2020.113659
  32. Liu X., Luo Y., Liu Z-Z., Yang Y., Liu J., Jia C.-X. Prolonged Mobile Phone Use Is Associated with Poor Academic Performance in Adolescents. Cyberpsychol. Behav. Soc. Netw., 2020, vol. 23, no. 5, pp. 303–311. DOI: 10.1089/cyber.2019.0591
  33. Roser K., Schoeni A., Röösl M. Mobile phone use, behavioural problems and concentration capacity in adolescents: A prospective study. Int. J. Hyg. Environ. Health, 2016, vol. 219, no. 8, pp. 759–769. DOI: 10.1016/j.ijheh.2016.08.007
  34. Bhatt C.R., Benke G., Smith C.L., Redmayne M., Dimitriadis C., Dalecki A., Macleod S., Sim M.R. [et al.]. Use of mobile and cordless phones and change in cognitive function: A prospective cohort analysis of Australian primary school children. Environ. Health, 2017, vol. 16, no. 1, pp. 62. DOI: 10.1186/s12940-017-0250-4
  35. Khorseva N.I., Marakhova V.A. Sovremennaya obrazovatel'naya sreda: formirovanie kul'tury pol'zovaniya mobil'nymi telefonami [Modern educational environment: the formation of a culture of mobile phone use]. Radiobiologiya: sovremennye prob-lemy 2020: materialy mezhdunarodnoi nauchnoi konferentsii, Gomel, September 24–25, 2020, pp. 142–144 (in Russian).
  36. Khorseva N.I., Marakhova V.A. Dinamika psikhofiziologicheskikh pokazatelei obuchayushchikhsya v ramkakh pro-filakticheskoi deyatel'nosti po vnedreniyu kul'tury pol'zovaniya mobil'nymi telefonami [Dynamics of psychophysiological indi-cators of students within the framework of preventive activities to introduce a culture of mobile phone use]. Materialy mezhdu-narodnoi nauchnoi konferentsii, Gomel, May 26–27, 2022. Minsk, Information Center of the Ministry of Finance Publ., 2022, pp. 156–161 (in Russian).
  37. Bamdad K., Adel Z., Esmaeili M. Complications of nonionizing radiofrequency on divided attention. J. Cell. Biochem., 2019, vol. 120, no. 6, pp. 10572–10575. DOI: 10.1002/jcb.28343
  38. Hosseini M.A., Hosseini A., Jarideh S., Argasi H., Shekoohi-Shooli F., Zamani A., Taeb S., Haghani M. Evaluating short-term exposure to wi-fi signals on students' reaction time, short-term memory and reasoning ability. Radiat. Prot. Dosimetry, 2019, vol. 187, no. 3, pp. 279–285. DOI: 10.1093/rpd/ncz162
  39. Grigoriev Yu.G. Cellular communication and electromagnetic health hazards of the population. Modern risk assessment – from electromagnetic smog to electromagnetic chaos. Vestnik novykh meditsinskikh tekhnologii, 2019, vol. 26, no. 2, pp. 88–95. DOI: 10.24411/1609-2163-2019-16347 (in Russian).
  40. Grigoriev Yu.G. Standart 5G – tekhnologicheskii skachok vpered v sotovoi svyazi: budet li problema so zdorov'em u naseleniya? (Pogruzhenie v problemu) [The 5G standard is a technological leap forward in cellular communications: will there be a public health problem? (immersing into the problem)]. Radiatsionnaya biologiya. Radioekologiya, 2020, vol. 60, no. 6, pp. 627–634. DOI: 10.31857/s0869803120060181 (in Russian).
  41. Betzalel N., Ishai P.B., Feldman Y. The human skin as a sub-THz receiver – Does 5G pose a danger to it or not? Envi-ron. Res., 2018, vol. 163, pp. 208–216. DOI: 10.1016/j.envres.2018.01.032
  42. Grigoriev Yu.G. Mobil'naya svyaz' i elektromagnitnyi khaos v otsenke opasnosti dlya zdorov'ya naseleniya. Kto neset otvetstvennost'? [Mobile communications and electromagnetic chaos in assessing population health hazards. Who is responsible?]. Radiatsionnaya biologiya. Radioekologiya, 2018, vol. 58, no. 6, pp. 633–645. DOI: 10.1134/S086980311806005X (in Russian).
  43. Maslov M.Yu., Spodobaev Yu.M., Spodobaev M.Yu. Electromagnetic safety: critical features of 5G networks. El-ektrosvyaz’, 2019, no. 4, pp. 53–58 (in Russian).
Received: 
24.08.2024
Approved: 
13.09.2024
Accepted for publication: 
20.09.2024

You are here