COVID-19 pandemic: the role of risk factors related to urban space (Analytical review)

UDC: 
613.6; 613.1; 616.9; 314.1
Authors: 

B.A. Revich

Organization: 

Institute of Economic Forecasting of Russian Academy of Sciences, 47 Nakhimovskii Ave., Moscow, 117418, Russian Federation

Abstract: 

Comfortable urban environment plays a key role in protecting health of people residing in large urban settlements. At the same time, urban space has some peculiarities including high population and building density, imperfect traffic infrastructure, irrational planning decisions, elevated levels of ambient air pollution, heat islands and lack of urban green spaces. All these features of any urban space are significant health risk factors able to facilitate spread of respiratory diseases. This was the most evident during the COVID-19 pandemic. The analytical review examines the results of studies focusing on impacts exerted by these unfavorable urban conditions on COVID-19 infection, incidence, hospitalization and mortality in cities across the globe.

Influence of elevated population density on COVID-19 infection is shown to be ambiguous as compared to other risk factors. More reliable data are available on the impact of air pollutants, especially PM, on incidence and mortality rates from the infectious disease in question. Also, the COVID-19 virus and abnormally high temperatures were shown to produce combined effects on mental health during the pandemic.

To reduce levels of infection in urban population, a suggestion is to further develop urban infrastructure providing people with retail and other necessary facilities within a walking distance (15 minutes). An important conclusion has been made by experts on elevated risks of infection in dense foot traffic as compared to public buildings. Therefore, it is important to improve communications about the necessity of social distancing. Urban development that aims to reduce infection with respiratory diseases should involve better street aeration. The results of these studies in various cities across the globe gave grounds for making management decisions on providing better mobility in suburban areas in a more comfortable natural environment, developing green areas in cities, and reducing negative effects of the warming climate on heat islands and elevated levels of ambient air pollution. Large open green spaces are the most effective in this respect.

Keywords: 
COVID-19, population health, health risks, public health, green spaces, city planning, territorial planning, urban planning, megacities
Revich B.A. COVID-19 pandemic: the role of risk factors related to urban space (analytical review). Health Risk Analysis, 2024, no. 2, pp. 170–184. DOI: 10.21668/health.risk/2024.2.16.eng
References: 
  1. Kakderi C., Komninos N., Panori A., Oikonomaki E. Next city: learning from cities during COVID-19 to tackle climate change. Sustainability, 2021, vol. 13, pp. 3158. DOI: 10.3390/su13063158
  2. Ali S.H., Keil R., Major C., Van Wagner E. Pandemics, place, and planning: Learning from SARS. Plan Canada, 2006, vol. 46, no. 3, pp. 34–36.
  3. Ige-Elegbede J., Pilkington P., Orme J., Williams B., Prestwood E., Black D., Carmichael L. Designing healthier neighbourhoods: A systematic review of the impact of the neighbourhood design on health and wellbeing. Cities Health, 2020, vol. 6, no. 5, pp. 1004–1019. DOI: 10.1080/23748834.2020.1799173
  4. Giles-Corti B., Vernez-Moudon A., Reis R., Turrell G., Dannenberg A.L., Badland H., Foster S., Lowe M. [et al.]. City planning and population health: A global challenge. Lancet, 2016, vol. 388, no. 10062, pp. 2912–2924. DOI: 10.1016/S0140-6736(16)30066-6
  5. Revich B.A., Shaposhnikov D.A. The COVID-19 Pandemic: New Knowledge on the Impact of Air Quality on the Spread of Coronavirus Infection in Cities. Studies on Russian Economic Development, 2021, vol. 32, no. 4, pp. 357–363. DOI: 10.1134/S1075700721040134
  6. Islam N., Jdanov D., Shkolnikov V.M., Khunti K., Kawachi I., White M., Lewington S., Lacey B. Effects of COVID-19 pandemic in life expectancy and premature mortality in 2020: time serial analysis in 37 countries. BMJ, 2021, vol. 375, pp. e066768. DOI: 10.1136/bmj-2021-066768
  7. Zaitseva N.V., Kleyn S.V., Glukhikh М.V. Spatial-dynamic heterogeneity of the COVID-19 epidemic process in the Russian Federation regions (2020–2023). Health Risk Analysis, 2023, no. 2, pp. 4–16. DOI: 10.21668/health.risk/2023.2.01.eng
  8. Peng Z., Wang R., Liu L., Wu H. Exploring urban spatial features of COVID- 19 transmission in Wuhan based on social media data. ISPRS International Journal of Geo-Information, 2020, vol. 9, no. 6, pp. 402. DOI: 10.3390/ijgi9060402
  9. You H., Wu X., Guo X. Distribution of COVID-19 morbidity rate in association with social and economic factors in Wuhan, China: Implications for urban development. Int. J. Environ. Res. Public Health, 2020, vol. 17, no. 10, pp. 3417. DOI: 10.3390/ijerph17103417
  10. Ren J., Yang J., Wu F., Sun W., Xiao X., Xia J.C. Regional thermal environment changes: Integration of satellite data and land use/land cover. iScience, 2022, vol. 26, no. 2, pp. 105820. DOI: 10.1016/j.isci.2022.105820
  11. Lin C., Lau A.K.H., Fung J.C.H., Guo C., Chan J.W.M., Yeung D.W., Zhang Y., Bo Y. [et al.]. A mechanism-based parameterisation scheme to investigate the association between transmission rate of COVID-19 and meteorological factors on plains in China. Sci. Total Environ., 2020, vol. 737, pp. 140348. DOI: 10.1016/j.scitotenv.2020.140348
  12. Choi K.H., Denice P., Haan M., Zajacova A. Studying the social determinants of COVID-19 in a data vacuum. Can. Rev. Sociol., 2021, vol. 58, no. 2, pp. 146–164. DOI: 10.1111/cars.12336
  13. Copiello S., Grillenzoni C. The spread of 2019-nCoV in China was primarily driven by population density. Comment on “Association between short-term exposure to air pollution and COVID-19 infection: Evidence from China” by Zhu et al. Sci. Total Environ., 2020, vol. 744, pp. 141028. DOI: 10.1016/j.scitotenv.2020.141028
  14. Carteni A., Di Fransesco L., Martino M. How mobility habits influenced the spread of the COVID-19 pandemic:
    Results from the Italian case study. Sci. Total Environ., 2020, vol. 741, pp. 140489. DOI: 10.1016/j.scitotenv.2020.140489
  15. Zhang C.H., Schwartz G.G. Spatial disparities in coronavirus incidence and mortality in the United States: An eco-logical analysis as of May 2020. J. Rural Health, 2020, vol. 36, no. 3, pp. 433–445. DOI: 10.1111/jrh.12476
  16. Connolly C., Keil R., Ali S.H. Extended urbanisation and the spatialities of infectious disease: demographic change, infrastructure and governance. Urban Stud., 2020, vol. 58, no. 3, pp. 004209802091087. DOI: 10.1177/0042098020910873
  17. Boterman W.R. Urban-rural polarisation in times of the corona outbreak? The early demographic and geographic pat-terns of the SARS-CoV-2 epidemic in the Netherlands. Tijdschr. Econ. Soc. Geogr., vol. 111, no. 3, pp. 513–529. DOI: 10.1111/tesg.12437
  18. McFarlane C. Critical Commentary: Repopulating density: COVID-19 and the politics of urban value. Urban Stud., 2023, vol. 60, no. 9, pp. 1548–1569. DOI: 10.1177/00420980211014810
  19. Hamidi S., Sabouri S., Ewing R. Does Density Aggravate the COVID-19 Pandemic?: Early Findings and Lessons for Planners. J. Am. Plan. Assoc., 2020, vol. 86, no. 4, pp. 495–509. DOI: 10.1080/01944363.2020.1777891
  20. Hamidi S., Hamidi I. Subway Ridership, Crowding, or Population Density: Determinants of COVID-19 Infection Rates in New York City. Am. J. Prev. Med., 2021, vol. 60, no. 5, pp. 614–620. DOI: 10.1016/j.amepre.2020.11.016
  21. Bryan M., Sun J., Jagai J., Horton D.E., Montgomery A., Sargis R., Argos M. Coronavirus disease 2019 (COVID-19) mortality and neighborhood characteristics in Chicago. Ann. Epidemiol., 2021, vol. 56, pp. 47–54.e5. DOI: 10.1016/j.annepidem.2020.10.011
  22. Hong A., Chakrabarti S. Compact living or policy inaction? Effects of urban density and lockdown on the Covid-19 outbreak in the US. Urban Stud., 2023, vol. 60, no. 9, pp. 1588–1609. DOI: 10.1177/00420980221127401
  23. Kawlra G., Sakamoto K. Spatialising urban health vulnerability: An analysis of NYC’s critical infrastructure during COVID-19. Urban Stud., 2023, vol. 60, no. 9, pp. 1629–1649. DOI: 10.1177/00420980211044304
  24. Moreno C., Allam Z., Chabaud D., Gall C., Pratlong F. Introducing the “15-Minute City”: Sustainability, resilience and place identity in future post-pandemic cities. Smart Cities, 2021, vol. 4, no. 1, pp. 93–111. DOI: 10.3390/smartcities4010006
  25. Guida C., Carpentieri G. Quality of life in the urban environment and primary health services for the elderly during the Covid-19 pandemic: An application to the city of Milan (Italy). Cities, 2021, vol. 110, pp. 103038. DOI: 10.1016/j.cities.2020.103038
  26. Litman T. Pandemic-Resilient Community Planning: Practical Ways to Help Communities Prepare for, Respond to, and Recover from Pandemics and Other Economic, Social and Environmental Shocks, 2020, 27 p.
  27. Ribeiro H.V., Sunahara A.S., Sutton J., Perc M., Hanley Q.S. City size and the spreading of COVID-19 in Brazil. PLoS One, 2020, vol. 15, no. 9, pp. e0239699. DOI: 10.1371/journal.pone.0239699
  28. Psyllidis A., Duarte F., Teeuwen R., Salazar Miranda A., Benson T., Bozzon A. Cities and infectious diseases: As-sessing the exposure of pedestrians to virus transmission along city streets. Urban Stud., 2023, vol. 60, no. 9, pp. 1610–1628. DOI: 10.1177/00420980211042824
  29. Pilyasov A.N., Zamyatina N.Yu., Kotov E.A. The Spread of the Covid-19 Pandemic in Russian Regions in 2020: Models and Reality. Ekonomika regiona, 2021, vol. 17, no. 4, pp. 1079–1095. DOI: 10.17059/ekon.reg.2021-4-3 (in Russian).
  30. Alov I.N., Pilyasov A.N. The spread of the COVID-19 infection in Russia’s Baltic macroregion: internal differences. Baltiiskii region, 2023, vol. 15, no.  1, pp. 96–119. DOI: 10.5922/2079-8555-2023-1-6 (in Russian).
  31. Pilyasov A.N., Alov I.N., Nikitin B.V. COVID-19 pandemic in the regions of Greater Siberia: diagnostics of the pro-cess, interaction with types of regional space, characteristics of special cases. Region: ekonomika i sotsiologiya, 2023, no. 1 (117), pp. 3–43. DOI: 10.15372/REG20230101 (in Russian).
  32. Bowe B., Xie Y., Gibson A.K., Cai M., van Donkelaar A., Martin R.V., Burnett R., Al-Aly Z. Ambient fine particulate matter air pollution and the risk of hospitalization among COVID-19 positive individuals: Cohort study. Environ. Int., 2021, vol. 154, pp. 106564. DOI: 10.1016/j.envint.2021.106564
  33. Rigolon A., Neґmeth J., Anderson-Gregson B., Miller A.R., deSouza P., Montague B., Hussain C., Erlandson K.M., Rowan S.E. The neighborhood built environment and COVID-19 hospitalizations. PLoS One, 2023, vol. 18, no. 6, pp. e0286119. DOI: 10.1371/journal.pone.0286119
  34. Mendy A., Wu X., Keller J.L., Fassler C.S., Apewokin S., Mersha T.B., Xie C., Pinney S.M. Long-term exposure to fine particulate matter and hospitalization in COVID-19 patients. Respir. Med., 2020, vol. 178, pp. 106313. DOI: 10.1016/j.rmed.2021.106313
  35. Glencross D.A., Ho T.-R., Camiña N., Hawrylowicz C.M., Pfeffer P.E. Air pollution and its effects on the immune system. Free Radic. Biol. Med., 2020, vol. 151, pp. 56–68. DOI: 10.1016/j.freeradbiomed. 2020.01.179
  36. Zhao C., Fang X., Feng Y., Fang X., He J., Pan H. Emerging role of air pollution and meteorological parameters in COVID-19. J. Evid. Based Med., 2021, vol. 14, no. 2, pp. 123–138. DOI: 10.1111/jebm.12430
  37. Zhu C., Maharajan K., Liu K., Zhang Y. Role of atmospheric particulate matter exposure in COVID-19 and other health risks in human: A review. Environ. Res., 2021, vol. 198, pp. 111281. DOI: 10.1016/j.envres.2021.111281
  38. Zaitseva N.V., May I.V., Reis J., Spenser P., Kiryanov D.A., Kamaltdinov M.R. On estimating the additional incidence of covid-19 among populations exposed to polluted ambient air: methodical approaches and some practical results. Health Risk Analysis, 2021, no. 3, pp. 14–28. DOI: 10.21668/health.risk/2021.3.02.eng
  39. Ginzburg A.S., Semenov V.A., Aleshina M.A., Semutnikova E.G., Zakharova P.V., Lezina E.A. Impact of COVID-19 lockdown on air quality in Moscow. Doklady Earth Sciences, 2020, vol. 495, no. 1, pp. 862–866. DOI: 10.1134/S1028334X20110069
  40. Popovicheva O.B., Chichaeva M.A., Kasimov N.S. Vliyanie ogranichitel'nykh mer vo vremya pandemii na aerozol'noe zagryaznenie atmosfery Moskovskogo megapolisa [Impact of Restrictive Measures during the COVID-19 Pandemic on Aerosol Pollution in Ambient Air in Moscow Megalopolis]. Vestnik Rossiiskoi akademii nauk, 2021, vol. 91, no. 4, pp. 351–361. DOI: 10.31857/S0869587321040083 (in Russian).
  41. United in science 2020. A multi-organization high-level compilation of the latest climate science information. Geneva, WMO, 2020, 28 p.
  42. Konstantinov P.I., Varentsov M.I., Grishchenko M.Yu., Samsonov T.E., Shartova N.V. Thermal stress assessment for an Arctic city in summer. Arktika: ekologiya i ekonomika, 2021, vol. 11, no. 2, рр. 219–231. DOI: 10.25283/2223-4594-2021-2-219-231 (in Russian).
  43. Konstantinov P.I. Pochemu v gorode teplee [Why it is warmer in the city]. N+1, 2021. Available at: https://nplus1.ru/blog/2021/01/22/heat-island (March 17, 2024) (in Russian).
  44. Smirnova M.D., Ageev F.T., Svirida O.N., Ratova L.G., Konovalova G.G., Tikhadze A.K., Lankin V.Z. Health effects of hot summer weather in patients with intermediate and high cardiovascular risk. Kardiovaskulyarnaya terapiya i profilaktika, 2013, vol. 12, no. 4, pp. 56–61. DOI: 10.15829/1728-8800-2013-4-56-61 (in Russian).
  45. Vasileva A.V., Neznanov N.G., Soloviev A.G. Mental ecology in the structure of the COVID-19 pandemic (re-view). Ekologiya cheloveka, 2022, vol. 29, no. 7, pp. 461–469. DOI: 10.17816/humeco81183 (in Russian).
  46. Shmatova Yu.E. Mental health of population in the COVID-19 pandemic: trends, consequences, factors, and risk groups. Economic and Social Changes: Facts, Trends, Forecast, 2021, vol. 14, no. 2, pp. 201–224. DOI: 10.15838/esc.2021.2.74.13
  47. Revich В.А. Menyayushchiisya klimat i zdorov'e naseleniya: problemy adaptatsii [Changing climate and population health: adaptation issues]: scientific report. In: Academician of the Russian Academy of Sciences B.N. Porfiryev ed. Мoscow, Dinamik Print Publ., 2023, 168 р. DOI: 10.47711/srl-2023 (in Russian).
  48. Wang W., He B.-J. Co-occurrence of urban heat and the COVID-19: Impacts, drivers, methods, and implications for the post-pandemic era. Sustain. Cities Soc., 2023, vol. 90, pp. 104387. DOI: 10.1016/j.scs.2022.104387
  49. Nakajima K., Takane Y., Kikegawa Y., Furuta Y., Takamatsu H. Human behaviour change and its impact on urban climate: Restrictions with the G20 Osaka Summit and COVID-19 outbreak. Urban Climate, 2021, vol. 35, no. 8, pp. 100728. DOI: 10.1016/j.uclim.2020.100728
  50. Taoufik M., Laghlimi M., Fekri A. Comparison of land surface temperature before, during and after the Covid-19 lockdown using landsat imagery: A Case study of Casablanca City, Morocco. Geomatics and Environmental Engineering, 2021, vol. 15, no. 2, pp. 105–120. DOI: 10.7494/geom.2021.15.2.105
  51. Chubarova N.E., Zhdanova E.Yu., Khattatov V.U., Vargin P.N. Aktual'nye problemy izucheniya ul'trafioletovoi radi-atsii i ozonovogo sloya [Actual problems of studying the ultraviolet radiation and the ozone layer]. Vestnik Rossiiskoi akademii nauk, 2016, vol. 86, no. 9, pp. 839–846. DOI: 10.7868/S0869587316050030 (in Russian).
  52. Nahaev M.I., Anan'ev L.B., Ivanova N.S., Zvyagintsev A.M., Kuznetsova I.N., Shalygina I.Yu. Ul'trafioletovaya obluchennost', UF-indeks i ikh prognozirovanie [Ultraviolet irradiation, UV index and its prediction]. Trudy Gidrometeoro-logicheskogo nauchno-issledovatel'skogo tsentra Rossiiskoi Federatsii, 2014, no. 351, pp. 173–187 (in Russian).
  53. Vargin P.N., Fomin B.A., Semenov V.A. Influence of ozone mini-holes over Russian territories in May 2021 and March 2022 revealed in satellite observations and simulation. Optika atmosfery i okeana, 2023, vol. 36, no. 4 (411), pp. 320–330. DOI: 10.15372/AOO20230409 (in Russian).
  54. Ugolini F., Massetti L., Calaza-Martínez P., Carinanos P., Dobbs C., Ostoic S.K., Marin A.M., Pearlmutter D. [et al.]. Effects of the COVID-19 pandemic on the use and perceptions of urban green space: an international exploratory study. Urban For. Urban Green., 2020, vol. 56, pp. 126888. DOI: 10.1016/j.ufug.2020.126888
  55. Ugolini F., Massetti L., Pearlmutter D., Sanesi G. Usage of urban green space and related feelings of deprivation during the COVID-19 lockdown: Lessons learned from an Italian case study. Land Use Policy, 2021, vol. 105, pp. 105437. DOI: 10.1016/j.landusepol.2021.105437
  56. Douglas M., Katikireddi S.V., Taulbut M., McKee M., McCartney G. Mitigating the wider health effects of COVID-19 pandemic response. BMJ, 2020, vol. 369, pp. m1557. DOI: 10.1136/bmj.m1557
  57. Shoari N., Ezzati M., Baumgartner J., Malacarne D., Fecht D. Accessibility and allocation of public parks and gardens in England and Wales: A COVID-19 social distancing perspective. PLoS One, 2020, vol. 15, no. 10, pp. e0241102. DOI: 10.1371/journal.pone.0241102
  58. Xie J., Luo S., Furuya K., Sun D. Urban parks as green buffers during the COVID-19 pandemic. Sustainability, 2020, vol. 12, no. 17, pp. 6751. DOI: 10.3390/su12176751
  59. Liu L. Emerging study on the transmission of the Novel Coronavirus (COVID-19) from urban perspective: Evidence from China. Cities, 2020, vol. 103, pp. 102759. DOI: 10.1016/j.cities.2020.102759
  60. You Y., Pan S. Urban vegetation slows down the spread of coronavirus disease (COVID-19) in the United States. Geophys. Res. Lett., 2020, vol. 47, no. 18, pp. e2020GL089286. DOI: 10.1029/2020GL089286
  61. Wang J., Wu X., Wang R., He D., Li D., Yang L., Yang Y., Lu Y. Review of associations between built environment characteristics and severe acute respiratory syndrome coronavirus 2 infection risk. Int. J. Environ. Res. Public Health, 2021, vol. 18, no. 14, pp. 7561. DOI: 10.3390/ijerph18147561
  62. Labib S.M., Browning M.H.E.M., Rigolon A., Helbich M., James P. Nature’s contributions in coping with a pandemic in the 21st century: A narrative review of evidence during COVID-19. Sci. Total Environ., 2022, vol. 833, pp. 155095. DOI: 10.1016/j.scitotenv.2022.155095
  63. Kraemer M.U.G., Yang C.-H., Gutierrez B., Wu C.-H., Klein B., Pigott D.M., open COVID-19 data working group, du Plessis L. [et al.]. The effect of human mobility and control measures on the COVID-19 epidemic in China. Science, 2020, vol. 368, no. 6490, pp. 493–497. DOI: 10.1126/science.abb4218
  64. Klompmaker J.O., Hart J.E., Holland I., Sabath M.B., Wu X., Laden F., Dominici F., James P. County-level exposures to greenness and associations with COVID-19 incidence and mortality in the United States. Environ. Res., 2021, vol. 199, pp. 111331. DOI: 10.1016/j.envres.2021.111331
  65. Burnett H., Olsen J.R., Nicholls N., Mitchell R. Change in time spent visiting and experiences of green space following restrictions on movement during the COVID-19 pandemic: A nationally representative cross-sectional study of UK adults. BMJ Open, 2021, vol. 11, no. 3, pp. e044067. DOI: 10.1136/bmjopen-2020-044067
  66. Astell-Burt T., Feng X. Time for ‘green’ during COVID-19? Inequities in green and blue space access, visitation and felt benefits. Int. J. Environ. Res. Public Health, 2021, vol. 18, no. 5, pp. 2757. DOI: 10.3390/ijerph18052757
  67. WHO. Urban green spaces: a brief for action. Copenhagen, World Health Organization, Regional Office for Europe, 2017.
  68. Varentsov M., Vasenev V., Dvornikov Y., Samsonov T., Klimanova O. Does size matter? Modelling the cooling effect of green infrastructures in a megacity during a heat wave. Sci. Total Environ., 2023, vol. 902, pp. 165966. DOI: 10.1016/j.scitotenv2023.165966
  69. Credit K. Neighbourhood inequity: Exploring the factors underlying racial and ethnic disparities in COVID-19 testing and infection rates using ZIP code data in Chicago and New York. Reg. Sci. Policy Pract., 2020, vol. 12, no. 6, pp. 1249–1272.
  70. Tribby C.P., Hartmann C. COVID-19 cases and the built environment: Initial evidence from New York City. Prof. Geogr., 2021, vol. 73, no. 3, pp. 365–376. DOI: 10.1080/00330124.2021.1895851
  71. Sallis R., Young D.R., Tartof S.Y., Sallis J.F., Sall J., Li Q., Smith G.N., Cohen D.A. Physical inactivity is associated with a higher risk for severe COVID-19 outcomes: a study in 48 440 adult patients. Br. J. Sports Med., 2021, vol. 55, no. 19, pp. 1099–1105. DOI: 10.1136/bjsports-2021-104080
  72. Petrov A.M., Tsypin A.P., Nuikina Yu.N. Statistical study of the spread of the COVID-19 virus in Russia and its im-pact on the country's economy. Ekonomicheskie nauki, 2022, no. 217, pp. 190–196. DOI: 10.14451/1.217.287 (in Russian).
  73. Shchur A., Sokolova V., Timonin S. Midlife mortality in Russia at the beginning of the 21st century: is there any reason for optimism? Demographic Review, vol. 10, no. 4, pp. 4–51. DOI: 10.17323/demreview.v10i4.18807 (in Russian).
  74. Rusanova N.E. Socio-economic facts surrounding the pandemic of COVID-19. Analiz i modelirovanie ekonomicheskikh i sotsial'nykh protsessov: Matematika. Komp'yuter. Obrazovanie, 2021, no. 28, pp. 66–76. DOI: 10.20537/mce2021econ06 (in Russian).
  75. Rice W., Mateer T., Reigner N., Newman P., Lawhon B., Taff D. Changes in recreational behaviors of outdoor en-thusiasts during the COVID-19 pandemic: analysis across urban and rural communities. J. Urban Ecol., 2020, vol. 6, no. 1, pp. 1–7. DOI: 10.1093/jue/juaa020
  76. Ahsan M. Strategic decisions on urban built environment to pandemics in Turkey: lessons from COVID-19. J. Urban Manag., 2020, vol. 9, no. 3, pp. 281–285. DOI: 10.1016/j.jum.2020.07.001
  77. Gouveia N., Kanai C. Pandemics, cities and public health. Ambiente Sociedade, 2020, vol. 23, no. 1954. DOI: 10.1590/1809-4422asoc20200120vu2020l3id
  78. Samuelsson K., Barthel S., Colding J., Macassa G., Giusti M. Urban Nature as a Source of Resilience during Social Distancing amidst the Coronavirus Pandemic. OSFPreprints, 2020. DOI: 10.31219/osf.io/3wx5a
  79. Stufano Melone M.R., Borgo S. Rethinking rules and social practices. The design of urban spaces in the post-COVID-19 lockdown. TeMA – Journal of Land Use Mobility and Environment, 2020, Special Issue. Covid-19 vs City-20, pp. 333–341. DOI: 10.6092/1970-9870/6923
  80. Maury-Mora M., Gomez-Villarino M.T., Varela-Martínez C. Urban green spaces and stress during COVID-19 lock-down: a case study for the city of Madrid. Urban For. Urban Green., 2022, vol. 69, pp. 127492. DOI: 10.1016/j.ufug.2022.127492
  81. Spano G., D’Este M., Giannico V., Elia M., Cassibba R., Lafortezza R., Sanesi G. Association between indoor-outdoor green features and psychological health during the COVID-19 lockdown in Italy: a cross-sectional nationwide study. Urban For. Urban Green., 2021, vol. 62, pp. 127156. DOI: 10.1016/j.ufug.2021.127156
  82. Kim J., Ko Y., Kim W., Kim G., Lee J., Eyman O.T.G., Chowdhury S., Adiwal J. [et al.]. Understanding the Impact of the COVID-19 Pandemic on the Perception and Use of Urban Green Spaces in Korea. Int. J. Environ. Res. Public Health, 2023, vol. 20, no. 4, pp. 3018. DOI: 10.3390/ijerph20043018
  83. Leone A., Balena P., Pelorosso R. Take advantage of the black swan to improve the urban environment. TeMA – Journal of Land Use Mobility and Environment, 2020, Special Issue. Covid-19 vs City-20, pp. 247–259. DOI: 10.6092/1970-9870/6851
  84. Murgante B., Borruso G., Balletto G., Castiglia P., Dettori M. Why Italy first? Health, geographical and planning as-pects of the COVID-19 outbreak. Sustainability, 2020, vol. 12, no. 12, pp. 5064. DOI: 10.3390/su12125064
  85. Bereitschaft B., Scheller D. How might the COVID-19 pandemic afect 21st century urban design, planning, and de-velopment? Urban Sci., 2020, vol. 4, no. 4, pp. 56. DOI: 10.3390/urbansci4040056
  86. Munzel T., Sorensen M., Lelieveld J., Hahad O., Al-Kindi S., Nieuwenhuijsen M., Giles-Corti B., Daiber A., Ra-jagopalan S. Heart healthy cities: genetics loads the gun but the environment pulls the trigger. Eur. Heart J., 2021, vol. 42, no. 25, pp. 2422–2438. DOI: 10.1093/eurheartj/ehab235
  87. Antunes M.E. Urban transformation post-pandemic: not business as usual. Forbes, 2021. Available at: https://www.forbes.com/sites/deloitte/2021/08/30/urban-transformation-po... (March 16, 2024).
  88. Nieuwenhuijsen M.J., Hahad O., Münzel T. The COVID 19 pandemic as a starting point to accelerate improvements in health in our cities through better urban and transport planning. Environ. Sci. Pollut. Res. Int., 2022, vol. 29, no. 12, pp. 16783–16785. DOI: 10.1007/s11356-021-18364-8
  89. Avaliani S.L., Revich B.A., Balter B.M., Gil’denskiol’d S.R., Mishina A.L., Klikushina E.G. Otsenka riska zag-ryazneniya okruzhayushchei sredy dlya zdorov'ya naseleniya kak instrument munitsipal'noi ekologicheskoi politiki v Moskovskoi oblasti [Assessment of Environmental Pollution Risk for Population Health as an Instrument of Municipal Environmental Policy in the Moscow Region Moscow]. Moscow, Biblioteka gazety «Ezhednevnye novosti. Podmoskov'e» Publ., 2010, 309 p. (in Russian).
  90. Pinigin M.A., Sidorenko V.F., Antyufeyev A.V., Balakin V.V. Architectural choices aimed at reducing the air pollution by vehicle emissions in residential areas. Gigiena i sanitariya, 2021, vol. 100, no. 2, pp. 92–98. DOI: 10.47470/0016-9900-2021-100-2-92-98 (in Russian).
  91. May I., Koshurnikov D. Accounting the noise factor when placing residential buildings as a condition for ensuring a favorable urban environment. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Prikladnaya ekologiya. Urbanistika, 2021, no. 3 (43), pp. 27–38. DOI: 10.15593/2409-5125/2021.03.03 (in Russian).
  92. Gordeev S.S. Vizualizatsiya transformatsii gorodskogo sotsial'nogo prostranstva [Visualization of transformations of urban social space]. Nauchnyi ezhegodnik Tsentra analiza i prognozirovaniya, Chelyabinsk, 2023, no. 1 (7), pp. 31–60 (in Russian).
  93. Gordeev S.S. Vizualizatsiya otsenok «sotsial'noe prostranstvo – gorodskaya vozdushnaya sreda» na primere Chelya-binskoi aglomeratsii [Visualization of assessments “social space – urban air environment” using the example of the Chelyabinsk agglomeration]. Nauchnyi ezhegodnik Tsentra analiza i prognozirovaniya, Chelyabinsk, 2022, no. 1 (6), pp. 64–88 (in Russian).
  94. Trofimenko Yu.V., Komkov V.I., Kutyrin B.A., Dejanov D.A. Assessment of pollutant emissions traffic flows on in-dividual territories of Moscow. Vestnik Moskovskogo avtomobil’no-dorozhnogo gosudarstvennogo tekhnicheskogo universiteta (MADI), 2020, no. 2 (61), pp. 84–91 (in Russian).
  95. Revich B.A. Urban planning and public health: analytical review. Health Risk Analysis, 2022, no. 1, pp. 147–161. DOI: 10.21668/health.risk/2022.1.17.eng
Received: 
10.04.2024
Approved: 
04.05.2024
Accepted for publication: 
20.06.2024

You are here