Assessing spatial distribution of sites with a risk of developing bronchopulmonary pathology based on mathematical modeling of air-dust flows in the human airways and lungs

View or download the full article: 
UDC: 
539.3; 532.546; 51-76; 519.6
Authors: 

P.V. Trusov1,2, М.Yu. Tsinker1,2, N.V. Zaitseva1,3, V.V. Nurislamov1,2, P.D. Svintsova2, А.I. Kuchukov2

Organization: 

1Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, 82 Monastyrskaya St., Perm, 614045, Russian Federation
2Perm National Research Polytechnic University, 29 Komsomolskii Av., Perm, 614990, Russian Federation
3Russian Academy of Sciences, the Department for Medical Sciences, 14 Solyanka St., Moscow, 109240, Russian Federation

Abstract: 

The article continues the series of studies that describe a mathematical model of the respiratory system developed by the authors and dwell on its use in practice to assess and predict risks for human health caused by negative effects of airborne environmental factors. The mathematical model includes several submodels that describe how an air mixture flows in the air-conducting zone (it includes the nasal cavity, pharynx, larynx, trachea and five generations of bronchi) and the lungs approximated with a continuous two-phase elastically deformed porous medium. The mathematical model is described by using continuum mechanics relationships. It is realized numerically by using engineering software (to investigate processes in the airways) and a self-developed set of programs (to simulate processes in the lungs). Numeric modeling of a non-stationary flow of an air-dust mixture is performed for a personalized three-dimensional geometry of the human respiratory system based on CT-scans.

The study provides calculated lines of velocity for a flow of particles in inhaled air in the airways. We have quantified shares of deposited articles with their diameters being 10 µm, 2.5 µm, and 1 µm (РМ10, РМ2,5, РМ1) in the airways; the study also provides trajectories of particulate matter. As particles become smaller and lighter, the share of deposited ones goes down in the airways and grows in the lungs. According to numeric modeling, most (more than 95 %) large particles (PM10) are deposited in the nasal cavity, pharynx and larynx; small particles are able to reach the lower airways and bronchi (most particles that reach the lungs penetrate lobar bronchi predominantly in the right lung). Sites with maximum health risks in the human lungs have been identified relying on assessing changes in an air phase mass within the respiration cycle; they are located in lower lobes of the lungs. When contacting airway walls, particles are able to be deposited and accumulate over time producing irritating, toxic and fibrogenic effects; they can thus cause and / or exacerbate pathological states.

Keywords: 
mathematical model, respiratory system, air-dust mixture, particle sedimentation, risk sites, human health, numeric modeling, personalized model
Trusov P.V., Tsinker М.Yu., Zaitseva N.V., Nurislamov V.V., Svintsova P.D., Kuchukov А.I. Assessing spatial distribution of sites with a risk of developing bronchopulmonary pathology based on mathematical modeling of air-dust flows in the human airways and lungs. Health Risk Analysis, 2024, no. 2, pp. 141–152. DOI: 10.21668/health.risk/2024.2.13.eng
References: 
  1. Rakitskii V.N., Avaliani S.L., Novikov S.M., Shashina T.A., Dodina N.S., Kislitsin V.A. Health risk analysis related to exposure to ambuent air contamination as a component in the strategy aimed at reducing global non-infectious epidemics. Health Risk Analysis, 2019, no. 4, pp. 30–36. DOI: 10.21668/health.risk/2019.4.03.eng
  2. Brunekreef B., Holgate S.T. Air pollution and health. Lancet, 2002, vol. 360, no. 9341, pp. 1233–1242. DOI: 10.1016/S0140-6736(02)11274-8
  3. Grzywa-Celińska A., Krusiński A., Milanowski J. ‘Smoging kills’ – Effects of air pollution on human respiratory sys-tem. Ann. Agric. Environ. Med., 2020, vol. 27, no. 1, pp. 1–5. DOI: 10.26444/aaem/110477
  4. Xing Y.-F., Xu Y.-H., Shi M.-H., Lian Y.-X. The impact of PM2.5 on the human respiratory system. J. Thorac. Dis., 2016, vol. 8, no. 1, pp. E69–E74. DOI: 10.3978/j.issn.2072-1439.2016.01.19
  5. Vlasova E.M., Vorobeva A.A., Ponomareva T.A. Peculiarities of cardiovascular pathology formation in workers of ti-tanium-magnesium production. Meditsina truda i promyshlennaya ekologiya, 2017, no. 9, pp. 38 (in Russian).
  6. Tikhonova I.V., Zemlyanova M.A., Kol'dibekova Yu.V., Peskova E.V., Ignatova A.M. Hygienic assessment of aero-genic exposure to particulate matter and its impacts on morbidity with respiratory diseases among children living in a zone in-fluenced by emissions from metallurgic production. Health Risk Analysis, 2020, no. 3, pp. 61–69. DOI: 10.21668/health.risk/2020.3.07.eng
  7. Vlasova E.M., Ustinova O.Yu., Nosov A.E., Zagorodnov S.Yu. Peculiarities of respiratory organs diseases in smelters dealing with titanium alloys under combined exposure to fine-disperse dust and chlorine compounds. Gigiena i sanitariya, 2019, vol. 98, no. 2, pp. 153–158. DOI: 10.18821/0016-9900-2019-98-2-153-158 (in Russian).
  8. Mudryi I.V., Korolenko T.K. [Heavy metals in the environment and their impact on the organism]. Lik. Sprava, 2002, no. 5–6, pp. 6–10 (in Ukrainian).
  9. Taran A.A., Biryukova N.V. Modern quality of life in a metropolis and methods of dealing with environmental degrada-tion. In book: Aktual'nye voprosy sovremennoi nauki i obrazovaniya. Penza, ‘Nauka i Prosveshchenie’ Publ., 2021, pp. 258–264 (in Russian).
  10. Toxicological profile for Silica. Atlanta, GA, U.S. Department of Health and Human Services, 2019. Available at: https://www.atsdr.cdc.gov/ToxProfiles/tp211.pdf (January 10, 2023).
  11. The Link Between Aluminum Exposure And Alzheimer’s Disease Can No Longer Be Ignored. Daily Health Post, 2020. Available at: https://dailyhealthpost.com/study-links-alzheimers-to-aluminum-exposure/ (January 12, 2023).
  12. Toxicological profile for Aluminum. Agency for Toxic Substances and Disease Registry. Atlanta, GA, U.S. Department of Health and Human Services, Public Health Service, 2008. Available at: https://www.atsdr.cdc.gov/toxprofiles/tp22.pdf (January 12, 2023).
  13. Danilov I.P., Zakharenkov V.V., Oleshchenko A.M., Shavlova O.P., Surzhikov D.V., Korsakova T.G., Kislitsina V.V., Panaiotti E.A. Occupational diseases in aluminium workers – possible ways of solving the problem. Byulleten' VSNTs SO RAMN, 2010, no. 4 (74), pp. 17–20 (in Russian).
  14. Li D., Li Y., Li G., Zhang Y., Li J., Chen H. Fluorescent reconstitution on deposition of PM2.5 in lung and extrap-ulmonary organs. Proc. Natl Acad. Sci. USA, 2019, vol. 116, no. 7, pp. 2488–2493. DOI: 10.1073/pnas.1818134116
  15. Zamankhan P., Ahmadi G., Wang Z., Hopke P.K., Cheng Y.-S., Su W.-C., Leonard D. Airflow and Deposition of Nano-Particles in a Human Nasal Cavity. Aerosol Science and Technology, 2006, vol. 40, pp. 463–476. DOI: 10.1080/02786820600660903
  16. Saghaian S.E., Azimian A.R., Jalilvand R., Dadkhah S., Saghaian S.M. Computational analysis of airflow and particle deposition fraction in the upper part of the human respiratory system. Biology, Engineering and Medicine, 2018, vol. 3, no. 6, pp. 6–9. DOI: 10.15761/BEM.1000155
  17. Rostami A.A. Computational modeling of aerosol deposition in respiratory tract: a review. Inhal. Toxicol., 2009, vol. 21, no. 4, pp. 262–290. DOI: 10.1080/08958370802448987
  18. Trusov P.V., Zaitseva N.V., Tsinker M.Yu., Nekrasova A.V. Mathematical model of airflow and solid particles transport in the human nasal cavity. Matematicheskaya biologiya i bioinformatika, 2021, vol. 16, no. 2, pp. 349–366. DOI: 10.17537/2021.16.349 (in Russian).
  19. Trusov P.V., Zaitseva N.V., Tsinker M.Yu., Kuchukov A.I. Numeric investigation of non-stationary dust-containing airflow and deposition of dust particles in the lower airways. Matematicheskaya biologiya i bioinformatika, 2023, vol. 18, no. 2, pp. 347–366. DOI: 10.17537/2023.18.347 (in Russian).
  20. Rattanapinyopituk K., Shimada A., Morita T., Togawa M., Hasegawa T., Seko Y., Inoue K., Takano H. Ultrastructural changes in the air–blood barrier in mice after intratracheal instillations of Asian sand dust and gold nanoparticles. Exp. Toxicol. Pathol., 2013, vol. 65, no. 7–8, pp. 1043–1051. DOI: 10.1016/j.etp.2013.03.003
  21. Furuyama A., Kanno S., Kobayashi T., Hirano S. Extrapulmonary translocation of intratracheally instilled fine and ultrafine particles via direct and alveolar macrophage-associated routes. Archives of Toxicology, 2009, vol. 83, pp. 429–437. DOI: 10.1007/s00204-008-0371-1
  22. Blank F., Stumbles P.A., Seydoux E., Holt P.G., Fink A., Rothen-Rutishauser B., Strickland D.H., von Garnier C. Size-dependent uptake of particles by pulmonary antigen-presenting cell populations and trafficking to regional lymph nodes. Am. J. Respir. Cell Mol. Biol., 2013, vol. 49, no. 1, pp. 67–77. DOI: 10.1165/rcmb.2012-0387OC
  23. Choi H.S., Ashitate Y., Lee J.H., Kim S.H., Matsui A., Insin N., Bawendi M.G., Semmler-Behnke M. [et al.]. Rapid translocation of nanoparticles from the lung airspaces to the body. Nat. Biotechnol., 2010, vol. 28, no. 12, pp. 1300–1303. DOI: 10.1038/nbt.1696
  24. Husain M., Wu D., Saber A.T., Decan N., Jacobsen N.R., Williams A., Yauk C.L., Wallin H. [et al.]. Intratracheally instilled titanium dioxide nanoparticles translocate to heart and liver and activate complement cascade in the heart of C57BL/6 mice. Nanotoxicology, 2015, vol. 9, no. 8, pp. 1013–1022. DOI: 10.3109/17435390.2014.996192
  25. Wall W.A., Rabczuk T. Fluid structure interaction in lower airways of CT-based lung geometries. Int. J. Num. Methods in Fluids, 2008, vol. 57, no. 5, pp. 653–675. DOI: 10.1002/fld.1763
  26. Rahman M., Zhao M., Islam M.S., Dong K., Saha S.C. Numerical study of nano and micro pollutant particle transport and deposition in realistic human lung airways. Powder Technology, 2022, vol. 402. pp. 117364. DOI: 10.1016/j.powtec.2022.117364
  27. Katz I., Pichelin M., Montesantos S., Murdock A., Fromont S., Venegas J., Caillibotte G. The influence of lung volume during imaging on CFD within realistic airway models. Aerosol Science and Technology, 2017, vol. 51, no. 2, pp. 214–223. DOI: 10.1080/02786826.2016.1254721
  28. Rahimi-Gorji M., Pourmehran O., Gorji-Bandpy M., Gorji T.B. CFD simulation of airflow behavior and particle transport and deposition in different breathing conditions through the realistic model of human airways. Journal of Molecular Liquids, 2015, vol. 209, pp. 121–133. DOI: 10.1016/j.molliq.2015.05.031
  29. Lin J., Fan J.R., Zheng Y.Q., Hu G.L., Pan D. Numerical simulation of inhaled aerosol particle deposition within 3D realistic human upper respiratory tract. AIP Conference Proceedings, 2010, vol. 1207, no. 1, pp. 992–997. DOI: 10.1063/1.3366500
  30. Qi S., Zhang B., Teng Y., Li J., Yue Y., Kang Y., Qian W. Transient dynamics simulation of airflow in a CT-scanned human airway tree: More or fewer terminal bronchi? Comput. Math. Methods Med., 2017, vol. 2017, pp. 1969023. DOI: 10.1155/2017/1969023
  31. Trusov P.V., Zaitseva N.V., Tsinker M.Yu. On modeling of airflow in human lungs: constitutive relations to describe deformation of porous medium. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Mekhanika, 2020, no. 4, pp. 165–174. DOI: 10.15593/perm.mech/2020.4.14 (in Russian).
  32. Artemova L.V., Baskova N.V., Burmistrova T.B., Buryakina E.A., Buhtiyarov I.V., Bushmanov A.Yu., Vasilyeva O.S., Vlasov V.G. [et al.]. Federal clinical recommendations on diagnosis, treatment and prevention of pneumoconiosis. Meditsina truda i promyshlennaya ekologiya, 2016, no. 1, pp. 36–49 (in Russian).
  33. Zaitseva N.V., Kiryanov D.A., Kleyn S.V., Tsinker M.Yu., Andrishunas A.M. Distribution of micro-sized range solid particles in the human airways: field experiment. Gigiena i sanitariya, 2023, vol. 102, no. 5, pp. 412–420. DOI: 10.47470/0016-9900-2023-102-5-412-420 (in Russian).
  34. Fatkhutdinova L.M., Tafeeva E.A., Timerbulatova G.A., Zalyalov R.R. Health risks of air pollution with fine particulate matter. Kazanskii meditsinskii zhurnal, 2021, vol. 102, no. 6, pp. 862–876. DOI: 10.17816/KMJ2021-862 (in Russian).
Received: 
31.03.2024
Approved: 
30.05.2024
Accepted for publication: 
20.06.2024

You are here