The risk of colorectal cancer incidence in a cohort of individuals occupationally exposed to ionizing radiation

View or download the full article: 
UDC: 
616.34-006
Authors: 

G.V. Zhuntova, M.V. Bannikova, T.V. Azizova

Organization: 

Southern Urals Biophysics Institute, 19 Ozerskoe shosse, Ozersk, 456780, Russian Federation

Abstract: 

The increased risk of colorectal cancer following ionizing radiation exposure was demonstrated in a number of epidemiological studies. Earlier, no impact of occupational radiation exposure on colorectal cancer incidence or mortality was observed in a cohort of workers of the nuclear industrial facility, Mayak Production Association (PA). Extension of the follow-up of the cohort and improvement of dose estimates for personnel made it possible to update the earlier findings.

The study objective is to assess the risk of colorectal cancer incidence associated with chronic occupational radiation exposure taking into account non-radiation factor effects.
The study cohort included 22,377 workers employed at the reactor, plutonium-producing and radiochemical plants of Mayak PA (hiring period 1948–1982; follow-up period ended on December 31, 2018). Using the Poisson regression (EPICURE software), the relative risks (RRs with 95 % confidence intervals, (95 % CI)) of colorectal cancer incidence were estimated depending on the most significant non-radiation factors (sex, age, smoking, alcohol consumption, excessive body mass and obesity, intestinal polyps, chronic colitis). These values were also calculated for certain ranges of occupational exposure doses relying on data provided by ‘The Mayak Worker Dosimetry System – 2013’. The linear model was used to analyze the dose-response relationship.

In the study cohort, the RR of colorectal cancer incidence was lower in females than in males: 0.72 (95 % CI: 0.55; 0.96) for colon and 0.48 (95 % CI: 0.34; 0.67) for rectum. The increased RR of the rectum cancer incidence was observed for cases with intestinal polyps: 3.42 (95 % CI: 1.68; 6.19). The colon cancer incidence risk increased with increasing age of workers, but other non-radiation factors were not shown to affect the results. This study supported the earlier results: no association was observed between the risk of colorectal cancer incidence and doses of occupational external gamma-ray or internal alpha-particle exposures.

Keywords: 
colon cancer, rectum cancer, external gamma-ray exposure, internal alpha-particle exposure, risk factors, nuclear workers, Poisson regression, analysis of dose-response relationship
Zhuntova G.V., Bannikova M.V., Azizova T.V. The risk of colorectal cancer incidence in a cohort of individuals occupationally exposed to ionizing radiation. Health Risk Analysis, 2024, no. 1, pp. 90–99. DOI: 10.21668/health.risk/2024.1.09.eng
References: 
  1. Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statis-tics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, vol. 68, no. 6, pp. 394–424. DOI: 10.3322/caac.21492
  2. Zlokachestvennye novoobrazovaniya v Rossii v 2018 godu (zabolevaemost' i smertnost') [Malignant neoplasms in Russia in 2018 (morbidity and mortality)]. In: A.D. Kaprin, V.V. Starinsky, G.V. Petrova eds. Moscow, MNIOI im. P.A. Gertsena Publ., 2019, 250 p. (in Russian).
  3. GBD 2017 Colorectal Cancer Collaborators. The global, regional, and national burden of colorectal cancer and its attributable risk factors in 195 countries and territories, 1990–2017: a sys-tematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol., 2019, vol. 4, no. 12, pp. 913–933. DOI: 10.1016/S2468-1253(19)30345-0
  4. Dekker E., Tanis P.J., Vleugels J., Kasi P.M., Wallace M.B. Colorectal cancer. Lancet, 2019, vol. 394, no. 10207, pp. 1467–1480. DOI: 10.1016/S0140-6736(19)32319-0
  5. Keum N., Giovannucci E. Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies. Nat. Rev. Gastroenterol. Hepatol., 2019, vol. 16, no. 12, pp. 713–732. DOI: 10.1038/s41575-019-0189-8
  6. Murphy N., Moreno V., Hughes D.J., Vodicka L., Vodicka P., Aglago E.K., Gunter M.J., Jenab M. Lifestyle and dietary environmental factors in colorectal cancer susceptibility. Mol. As-pects Med., 2019, vol. 69, pp. 2–9. DOI: 10.1016/j.mam.2019.06.005
  7. Ye P., Xi Y., Huang Z., Pengfei X. Linking Obesity with Colorectal Cancer: Epidemiology and Mechanistic Insights. Cancers, 2020, vol. 12, no. 6, pp. 1408. DOI: 10.3390/cancers12061408
  8. Kastrinos F., Samadder N.J., Burt R.W. Use of Family History and Genetic Testing to De-termine Risk of Colorectal Cancer. Gastroenterology, 2020, vol. 158, no. 2, pp. 389–403. DOI: 10.1053/j.gastro.2019.11.029
  9. Valle L., Vilar E., Tavtigian S.V., Stoffel E.M. Genetic predisposition to colorectal cancer: syndromes, genes, classification of genetic variants and implications for precision medicine. J. Pathol., 2019, vol. 247, no. 5, pp. 574–588. DOI: 10.1002/path.5229
  10. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Ionizing radiation, Part 1, X- and Gamma-Radiation and Neutrons. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, no. 75. Lyon, International Agency for Research on Cancer, 2000, pp. e448.
  11. Sugiyama H., Misumi M., Brenner A., Grant E.J., Sakata R., Sadakane A., Utada M., Pres-ton D.L. [et al.]. Radiation risk of incident colorectal cancer by anatomical site among atomic bomb survivors: 1958–2009. Int. J. Cancer, 2020, vol. 146, no. 3, pp. 635–645. DOI: 10.1002/ijc.32275
  12. Ozasa K., Shimizu Y., Suyama A., Kasagi F., Soda M., Grant E.J., Sakata R., Sugiyama H., Kodama K. Studies of the mortality of atomic bomb survivors, Report 14, 1950–2003: an overview of cancer and noncancer diseases. Radiat. Res., 2012, vol. 177, no. 3, pp. 229–243. DOI: 10.1667/rr2629.1
  13. Preston D.L., Ron E., Tokuoka S., Funamoto S., Nishi N., Soda M., Mabuchi K., Kodama K. Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiat. Res., 2007, vol. 168, no. 1, pp. 1–64. DOI: 10.1667/RR0763.1
  14. Zhu Z., Zhao S., Liu Y., Wang J., Luo L., Li E., Zhang C., Luo J., Zhao Z. Risk of secon-dary rectal cancer and colon cancer after radiotherapy for prostate cancer: a meta-analysis. Int. J. Colorectal Dis., 2018, vol. 33, no. 9, pp. 1149–1158. DOI: 10.1007/s00384-018-3114-7
  15. Rodriguez A.M., Kuo Y.-F., Goodwin J.S. Risk of colorectal cancer among long-term cervical cancer survivors. Med. Oncol., 2014, vol. 31, no. 5, pp. 943–949. DOI: 10.1007/s12032-014-0943-2
  16. Allodji R.S., Haddy N., Vu-Bezin G., Dumas A., Fresneau B., Mansouri I., Demoor-Goldschmidt C., El-Fayech C. [et al.]. Risk of subsequent colorectal cancers after a solid tumor in childhood: Effects of radiation therapy and chemotherapy. Pediatr. Blood Cancer, 2019, vol. 66, no. 2, pp. e27495. DOI: 10.1002/pbc.27495
  17. Richardson D.B., Cardis E., Daniels R.D., Gillies M., Haylock R., Leuraud K., Laurier D., Moissonnier M. [et al.]. Site-specific Solid Cancer Mortality After Exposure to Ionizing Radiation: A Cohort Study of Workers (INWORKS). Epidemio¬logy, 2018, vol. 29, no. 1, pp. 31–40. DOI: 10.1097/EDE.0000000000000761
  18. Hunter N., Kuznetsova I.S., Labutina E.V., Harrison J.D. Solid cancer incidence other than lung, liver and bone in Mayak workers: 1948–2004. Br. J. Cancer, 2013, vol. 109, no. 7, pp. 1989–1996. DOI: 10.1038/bjc.2013.543
  19. Sokolnikov M., Preston D., Gilbert E., Schonfeld S., Koshurnikova N. Radiation effects on mortality from solid cancers other than lung, liver, and bone cancer in the Mayak worker cohort: 1948–2008. PLoS One, 2015, vol. 10, no. 2, pp. e0117784. DOI: 10.1371/journal.pone.0117784
  20. Birchall A., Vostrotin V., Puncher M., Efimov A., Dorrian M.-D., Sokolova A., Napier B., Suslova K. [et al.]. The Mayak Worker Dosimetry System (MWDS-2013) for internally deposited plutonium: an overview. Radiat. Prot. Dosimetry, 2017, vol. 176, no. 1–2, pp. 10–31. DOI: 10.1093/rpd/ncx014
  21. Azizova T.V., Sumina M.V., Belyaeva Z.D., Druzhinina M.B., Teplyakov I.I., Semeni-khina N.G., Stetsenko L.A., Grigoryeva E.S. [et al.]. The "clinic" medical-dosimetric database of Mayak production association workers: structure, characteristics and prospects of utilization. Health Phys., 2008, vol. 94, no. 5, pp. 449–458. DOI: 10.1097/01.HP.0000300757.00912.a2
  22. Murphy N., Ward H.A., Jenab M., Rothwell J.A., Boutron-Ruault M.-C., Carbonnel F., Kvaskoff M., Kaaks R. [et al.]. Heterogeneity of Colorectal Cancer Risk Factors by Anatomical Subsite in 10 European Countries: A Multinational Cohort Study. Clin. Gastroenterol. Hepatol., 2019, vol. 17, no, 7, pp. 1323–1331.e6. DOI: 10.1016/j.cgh.2018.07.030
  23. Hamada T., Nowak J.A., Masugi Y., Drew D.A., Song M., Cao Y., Kosumi K., Mima K. [et al.]. Smoking and risk of colorectal cancer sub-classified by tumor-infiltrating T cells. J. Natl Cancer Inst., 2019, vol. 111, no. 1, pp. 42–51. DOI: 10.1093/jnci/djy137
  24. Rossi M., Jahanzaib Anwar M., Usman A., Keshavarzian A., Bishehsari F. Colorectal Cancer and Alcohol Consumption-Populations to Molecules. Cancers (Basel), 2018, vol. 10, no. 2, pp. 38. DOI: 10.3390/cancers10020038
  25. Keller D.S., Windsor A., Cohen R., Chand M. Colorectal cancer in inflammatory bowel disease: review of the evidence. Tech. Coloproctol., 2019, vol. 23, no. 1, pp. 3–13. DOI: 10.1007/s10151-019-1926-2
  26. Sawicki T., Ruszkowska M., Danielewicz A., Niedźwiedzka E., Arłukowicz T., Przybyło-wicz K.E. A Review of Colorectal Cancer in Terms of Epidemiology, Risk Factors, Development, Symptoms and Diagnosis. Cancers (Basel), 2021, vol. 13, no. 9, pp. 2025. DOI: 10.3390/cancers13092025
  27. Loughrey M.B., Shepherd N.A. Problematic Colorectal Polyps: Is It Cancer and What Do I Need to Do About It? Surg. Pathol. Clin., 2017, vol. 10, no. 4, pp. 947–960. DOI: 10.1016/j.path.2017.07.009
  28. Lucas C., Barnich N., Nguyen H.T.T. Microbiota, Inflammation and Colorectal Cancer. Int. J. Mol. Sci., 2017, vol. 18, no. 6, pp. 1310. DOI: 10.3390/ijms18061310
  29. Thanikachalam K., Khan G. Colorectal Cancer and Nutrition. Nutrients, 2019, vol. 11, no. 1, pp. 164. DOI: 10.3390/nu11010164
  30. Haylock R.G.E., Gillies M., Hunter N., Zhang W., Phillipson M. Cancer mortality and in-cidence following external occupational radiation exposure: an update of the 3rd analysis of the UK national registry for radiation workers. Br. J. Cancer., 2018, vol. 119, no. 5, pp. 631–637. DOI: 10.1038/s41416-018-0184-9
  31. Wing S., Richardson D., Wolf S., Mihlan G. Plutonium-related work and cause-specific mortality at the United States Department of Energy Hanford Site. Am. J. Ind. Med., 2004, vol. 45, no. 2, pp. 153–164. DOI: 10.1002/ajim.10332
  32. Harrison J.D., Muirhead C.R. Quantitative comparisons of cancer induction in humans by internally deposited radionuclides and external radiation. Int. J. Radiat. Biol., 2003, vol. 79, no. 1, pp. 1–13.
  33. Stebbings J.H. Health risks from radium in workplaces: an unfinished story. Occup. Med., 2001, vol. 16, no. 2, pp. 259–270.
  34. Kang J.K., Seo S., Jin Y.W. Health Effects of Radon Exposure. Yonsei Med. J., 2019, vol. 60, no. 7, pp. 597–603. DOI: 10.3349/ymj.2019.60.7.597
  35. López-Abente G., Núñez O., Fernández-Navarro P., Barros-Dios J.M., Martín-Méndez I., Bel-Lan A., Locutura J., Quindós L. [et al.]. Residential radon and cancer mortality in Galicia, Spain. Sci. Total Environ., 2018, vol. 610–611, pp. 1125–1132. DOI: 10.1016/j.scitotenv.2017.08.144
  36. Fukumoto M. Radiation pathology: from thorotrast to the future beyond radioresistance. Pathol. Int., 2014, vol. 64, no. 6, pp. 251–262. DOI: 10.1111/pin.12170
Received: 
18.10.2023
Approved: 
13.03.2024
Accepted for publication: 
14.03.2024

You are here