Anthropometric indices and bioimpedance body composition as ontogenetic indicators to describe risk of obesity

View or download the full article: 
UDC: 
572.511
Authors: 

O.O. Alyoshina, I.V. Averyanova

Organization: 

Scientific Center “Arktika”, Far Eastern Branch of the Russian Academy of Sciences (SC “Arktika” FEB RAS), 24 Karl Marx St., Magadan, 685000, Russian Federation

Abstract: 

The body mass index does not distinguish body fat mass from fat-free mass and does not capture changes in these parameters. The aim of this study was to establish an association between anthropometric indexes and bioimpedance indicators with age-specific obesity on the example of male population in the Magadan oblast. To achieve it, we examined 586 males who lived in the Magadan oblast by using conventional methods for assessment of physical development. The ROC analysis was performed and the area under the ROC curve (AUC) was measured.

The analysis of the obtained research data established a significant decrease in FFMI values with age (from young males to elderly ones) together with growing FMI, FMI/FFMI ratio, total body fat and the waist-to-hip ratio. To determine an optimal BMI value as an indicator eligible to diagnose obesity, a ROC-curve was built to describe a relationship between BMI and FMI/FFMI value < 0.4 cu. It showed that when BMI ranged between 22 kg/m2 and 25.0 kg/m2 in young males, bioimpedance values corresponded to the physiological norm; in the early maturity group, the optimal BMI cut-off point for diagnosing obesity was 26.5 kg/m2; the optimal BMI range in the 2nd maturity group was 24.0–27.5 kg/m2. It is noteworthy that the ROC-analysis turned out to have no predictive significance among elderly men; this indicates that BMI is hardly eligible for being used as an indicator of obesity risk in this period of ontogenesis.

Classical BMI ranges cannot be considered a clear indicator to diagnose obesity among males in the Magadan oblast whereas indicators obtained by bioimpedance analysis (FMI/FFMI ratios) can be used as relevant indicators when assessing risks of obesity and sarcopenia in the analyzed population.

Keywords: 
BMI, bioimpedance analysis, anthropometric indices, age dynamics, physical development, male population, obesity, ROC-analysis
Alyoshina O.O., Averyanova I.V. Anthropometric indices and bioimpedance body composition as ontogenetic indicators to describe risk of obesity. Health Risk Analysis, 2024, no. 1, pp. 111–120. DOI: 10.21668/health.risk/2024.1.11.eng
References: 
  1. Gómez-Campos R., Vidal-Espinoza R., Castelli Correia de Campos L.F., Sulla-Torres J., Cossio-Bolaños W., de Arruda M., Albornoz C.U., Cossio-Bolaños M. Comparison of anthropometric indicators as predictors of the percentage of fat mass in young people and older adults in Chile. Endocrinol. Diabetes Nutr. (Engl. Ed.), 2022, vol. 69, no. 1, pp. 25–33. DOI: 10.1016/j.endien.2022.01.002
  2. Safaei M., Sundararajan E.A., Driss M., Boulila W., Shapi'i A. A systematic literature review on obesity: Understanding the causes & consequences of obesity and reviewing various machine learning approaches used to predict obesity. Comput. Biol. Med., 2021, vol. 136, pp. 104754. DOI: 10.1016/j.compbiomed.2021.104754
  3. Hu L., Huang X., You C., Li J., Hong K., Li P., Wu Y., Wu Q. [et al.]. Prevalence of over-weight, obesity, abdominal obesity and obesity-related risk factors in southern China. PLoS One, 2017, vol. 12, no. 9, pp. e0183934. DOI: 10.1371/journal.pone.0183934
  4. Young N., Atan I.K., Rojas R.G., Dietz H.P. Obesity: how much does it matter for female pelvic organ prolapse? Int. Urogynecol. J., 2018, vol. 29, no. 8, pp. 1129–1134. DOI: 10.1007/s00192-017-3455-8
  5. Chooi Y.C., Ding C., Magkos F. The epidemiology of obesity. Metabolism, 2019, vol. 92, pp. 6–10. DOI: 10.1016/j.metabol.2018.09.005
  6. Tuovinen E.-L., Saarni S.E., Männistö S., Borodulin K., Patja K., Kinnunen T.H., Kaprio J., Korhonen T. Smoking status and abdominal obesity among normal- and overweight/obese adults: Population-based FINRISK study. Prev. Med. Rep., 2016, vol. 4, pp. 324–330. DOI: 10.1016/j.pmedr.2016.07.003
  7. Dedov I.I., Shestakova M.V., Melnichenko G.A., Mazurina N.V., Andreeva E.N., Bondarenko I.Z., Gusova Z.R., Dzgoeva F.K. [et al.]. Interdisciplinary Clinical Practice Guidelines “Management of obesity and its comorbidities”. Ozhirenie i metabolism, 2021, vol. 18, no. 1, pp. 5–99. DOI: 10.14341/omet12714 (in Russian).
  8. Rehunen S.K., Kautiainen H., Korhonen P.E., Eriksson J.G. Lean body mass is not beneficial, but may be detrimental for glucose tolerance – Splitting body mass index according to body composition. Prim. Care Diabetes, 2020, vol. 14, no. 6, pp. 747–752. DOI: 10.1016/j.pcd.2020.05.003
  9. Pyastolova N.B. Quetelet index as a tool for assessing the physical condition of the body. Fizicheskaya kul'tura. Sport. Turizm. Dvigatel'naya rekreatsiya, 2020, vol. 5, no. 4, pp. 43–48. DOI: 10.24411/2500-0365-2020-15406 (in Russian)
  10. De Lorenzo A., Martinoli R., Vaia F., Di Renzo L. Normal weight obese (NWO) women: an evaluation of a candidate new syndrome. Nutr. Metab. Cardiovasc. Dis., 2006, vol. 16, no. 8, pp. 513–523. DOI: 10.1016/j.numecd.2005.10.010
  11. Romero‐Corral A., Somers V.K., Sierra‐Johnson J., Korenfeld Y., Boarin S., Korinek J., Jensen M.D., Parati G., Lopez‐Jimenez F. Normal weight obesity: a risk factor for cardiometabolic dysregulation and cardiovascular mortality. Eur. Heart J., 2010, vol. 31, no. 6, pp. 737–746. DOI: 10.1093/eurheartj/ehp487
  12. Kozlova L.V., Bekezin V.V., Druzhinina T.V., Peresetskaya O.V. Place of bioimpedance analysis in epidemiological assessment of nutritional status of adults and children (review). Smolenskii meditsinskii al'manakh, 2017, no. 4, pp. 13–22 (in Russian).
  13. Lee D.H., Keum N., Hu F.B., Orav E.J., Rimm E.B., Willett W.C., Giovannucci E.L. Predicted lean body mass, fat mass, and all cause and cause specific mortality in men: prospective US cohort study. BMJ, 2018, vol. 362, pp. k2575. DOI: 10.1136/bmj.k2575
  14. Xiao P., Cheng H., Yan Y., Liu J., Zhao X., Li H., Mi J. High BMI with adequate lean mass is not associated with cardiometabolic risk factors in children and adolescents. J. Nutr., 2021, vol. 151, no. 5, pp. 1213–1221. DOI: 10.1093/jn/nxaa328
  15. Haldar S., Chia S.C., Henry C.J. Body Composition in Asians and Caucasians: comparative analyses and influences on cardiometabolic outcomes. Adv. Food Nutr. Res., 2015, vol. 75, pp. 97–154. DOI: 10.1016/bs.afnr.2015.07.001
  16. Perevoshchikova N.K., Seliverstov I.A., Drakina S.A., Chernykh N.S. Bioelectrical impedance analysis in clinical practice. Mat' i ditya v Kusbasse, 2021, no. 3 (86), pp. 11–20. DOI: 10.24412/2686-7338-2021-3-11-20 (in Russian).
  17. Samoylov A.S., Zholinskiy A.V., Rylova N.V., Velichko M.N., Bolshakov I.V., Bodrov A.V., Simonov R.A., Chizhikov P.D. Modern methods of body composition analysis. Prakticheskaya meditsina, 2022, vol. 20, no. 1, pp. 21–26. DOI: 10.32000/2072-1757-2022-1-21-26 (in Russian).
  18. Górnicka M., Szewczyk K., Białkowska A., Jancichova K., Habanova M., Górnicki K., Hamulka J. Anthropometric indices as predictive screening tools for obesity in adults; the need to define sex-specific cut-off points for anthropometric indices. Appl. Sci., 2022, vol. 12, no. 12, pp. 6165. DOI: 10.3390/app12126165
  19. WHO Expert Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet, 2004, vol. 363, no. 9403, pp. 157–163. DOI: 10.1016/s0140-6736(03)15268-3
  20. Kyle U.G., Pirlich M., Lochs H., Schuetz T., Pichard C. Increased length of hospital stay in underweight and overweight patients at hospital admission: A controlled population study. Clin. Nutr., 2005, vol. 24, no. 1, pp. 133–142. DOI: 10.1016/j.clnu.2004.08.012
  21. WHO European Regional Obesity Report 2022. Copenhagen, Denmark, WHO, 2022, 206 p. Available at: https://apps.who.int/iris/handle/10665/353747.pdf (May 05, 2023).
  22. Pluta W., Dudzińska W., Lubkowska A. Metabolic Obesity in People with Normal Body Weight (MONW) – Review of Diagnostic Criteria. Int. J. Environ. Res. Public Health, 2022, vol. 19, no. 2, pp. 624. DOI: 10.3390/ijerph19020624
  23. Nimptsch K., Konigorski S., Pischon T. Diagnosis of obesity and use of obesity biomarkers in science and clinical medicine. Metabolism, 2019, vol. 92, pp. 61–70. DOI: 10.1016/j.metabol.2018.12.006
  24. Gažarová M., Bihari M., Lorková M., Lenártová P., Habánová M. The Use of Different Anthropometric Indices to Assess the Body Composition of Young Women in Relation to the Incidence of Obesity, Sarcopenia and the Premature Mortality Risk. Int. J. Environ. Res. Public Health, 2022, vol. 19, no. 19, pp. 12449. DOI: 10.3390/ijerph191912449
  25. Aune D., Sen A., Norat T., Janszky I., Romundstad P., Tonstad S., Vatten L.J. Body Mass Index, Abdominal Fatness, and Heart Failure Incidence and Mortality: a systematic review and dose-response meta-analysis of prospective studies. Circulation, 2016, vol. 133, no. 7, pp. 639–649. DOI: 10.1161/CIRCULATIONAHA.115.016801
  26. Zhang D., Chen J., Wang J., Gong S., Jin H., Sheng P., Qi X., Lv L. [et al.]. Body mass index and risk of brain tumors: a systematic review and dose-response meta-analysis. Eur. J. Clin. Nutr., 2016, vol. 70, no. 7, pp. 757–765. DOI: 10.1038/ejcn.2016.4
Received: 
31.10.2023
Approved: 
11.03.2024
Accepted for publication: 
20.03.2024

You are here