Genetic risk factors for occupational contact dermatitis

View or download the full article: 
UDC: 
613.6.027; 616.5-001.1-057
Authors: 

A.M. Amromina, D.R. Shaikhova, I.A. Bereza

Organization: 

Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov St., Yekaterinburg, 620014, Russian Federation

Abstract: 

Occupational contact dermatitis is an important current occupational health problem with serious economic and social consequences. Among possible risk factors for this disease, researchers pay attention to genetic predisposition. Identification of polymorphisms associated with the occupational pathology will allow specialists to establish risk groups, carry out timely preventive measures, and adjust treatment, guided by a personalized medicine approach.

The purpose of this review was to summarize the results of studying genetic risk factors for occupational contact dermatitis. Three researchers did an independent search in the PubMed, Google Scholar, eLibrary, and CyberLeninka databases and further analysis of scientific literature on genetic predisposition to occupational dermatitis published in 1990 to 2023. Of 88 papers analyzed, 32 articles were included in this review.

We established that genetic risk factors for occupational contact dermatitis were usually studied in metallurgical workers with a focus on potential candidate genes among skin barrier function-related genes, pro-inflammatory and anti-inflammatory genes, and xenobiotic metabolism and biotransformation genes. The most compelling evidence for the use of genetic polymorphisms as risk factors for occupational contact dermatitis has been demonstrated for the filaggrin (FLG) gene, which is involved in maintaining the skin barrier, and tumor necrosis factor alpha (TNF-α), which is involved in protecting the body and cells from inflammation and apoptosis. However, the data available are insufficient to use genetic polymorphisms as risk factors for occupational skin diseases. Further studies that take into account the mechanism of interaction of different genes during the development of occupational contact dermatitis are required.

Keywords: 
genetic risk factors, genetic predisposition, allergic contact dermatitis, irritant contact dermatitis, occupational contact dermatitis, gene polymorphisms, candidate genes
Amromina A.M., Shaikhova D.R., Bereza I.A. Genetic risk factors for occupational contact dermatitis. Health Risk Analysis, 2023, no. 4, pp. 180–191. DOI: 10.21668/health.risk/2023.4.17.eng
References: 
  1. Mijakoski D. Occupational skin diseases. In book: Allergy and Immunotoxicology in Occupational Health – The Next Step. In: T. Otsuki, M. Di Gioacchino, C. Petrarca eds. Singapore, Springer, 2020, pp. 129–149. DOI: 10.1007/978-981-15-4735-5_9
  2. Srinivas C.R., Sethy M. Occupational dermatoses. Indian Dermatol. Online J., 2022, vol. 14, no. 1, pp. 21–31. DOI: 10.4103/idoj.idoj_332_22
  3. Ufimtseva M.A., Nikolaeva K.I., Beresneva T.A., Mylnikova E.S., Shubina A.S., Soroki-na K.N., Efimova M.S., Komarov A.A. Modern approach to the diagnosis of occupational skin diseases in workers of industrial enterprises of the Sverdlovsk region. Sovremennye problemy nauki i obrazovaniya, 2021, no. 2, pp. 189. DOI: 10.17513/spno.30580 (in Russian).
  4. Dietz J.B., Menne T., Meyer H.W., Viskum S., Flyvholm M.A., Ahrensboll-Friis U., John S.M., Johansen J.D. Occupational contact dermatitis among young people in Denmark – A survey of causes and long-term consequences. Contact Dermatitis, 2022, vol. 86, no. 5, pp. 404–416. DOI: 10.1111/cod.14050
  5. Li H., Dai Y., Huang H., Li L., Leng S., Cheng J., Niu Y., Duan H. [et al.]. HLA-B*1301 as a biomarker for genetic susceptibility to hypersensitivity dermatitis induced by trichloroethylene among workers in China. Environ. Health Perspect., 2007, vol. 115, no. 11, pp. 1553–1556. DOI: 10.1289/ehp.10325
  6. Timmerman J.G., Heederik D., Spee T., van Rooy F.G., Krop E.J., Koppelman G.H., Rustemeyer T., Smit L.A. Contact dermatitis in the construction industry: the role of filaggrin loss-of-function mutations. Br. J. Dermatol., 2016, vol. 174, no. 2, pp. 348–355. DOI: 10.1111/bjd.14215
  7. Dai Y., Leng S., Li L., Niu Y., Huang H., Liu Q., Duan H., Cheng J. [et al.]. Effects of genetic polymorphisms of N-Acetyltransferase on trichloroethylene-induced hypersensitivity der-matitis among exposed workers. Ind. Health, 2009, vol. 47, no. 5, pp. 479–486. DOI: 10.2486/indhealth.47.479
  8. Il’inskikh N.N., Il’inskikh E.N. The role of cytogenetic instability and polymorphism of genes of glutathione-S-transferase and filaggrin proteins in development of occupational dermatitis in oil field workers. Izvestiya vysshikh uchebnykh zavedenii. Povolzhskii region. Meditsinskie nauki, 2017, no. 1 (41), pp. 18–27. DOI: 10.21685/2072-3032-2017-1-2 (in Russian).
  9. Kuz’mina L.P., Izmerova N.I., Kolyaskina M.M. Role of interleukin-4, interleukin-10,
    and tumor necrosis factor-α polymorphic genes in the pathogenesis of occupational allergic dermatoses. Bulletin of Experimental Biology and Medicine, 2015, vol. 159, no. 6, pp. 779–781. DOI: 10.1007/s10517-015-3074-7
  10. Faskhutdinova A.A., Valeyeva E.T., Shagalina A.U., Gimranova G.G., Abdrakhma-nova E.R., Borisova A.I. Risk factors and specificities of occupational skin diseases development among Bashkortostan workers. Meditsina truda i ekologiya cheloveka, 2018, no. 1 (13), pp. 57–64 (in Russian).
  11. Molin S., Vollmer S., Weiss E.H., Weisenseel P., Ruzicka T., Prinz J.C. Deletion of the late cornified envelope genes LCE3B and LCE3C may promote chronic hand eczema with allergic contact dermatitis. J. Investig. Allergol. Clin. Immunol., 2011, vol. 21, no. 6, pp. 472–479.
  12. Meisser S.S., Altunbulakli C., Bandier J., Opstrup M.S., Castro-Giner F., Akdis M., Bone-feld C.M., Johansen J.D., Akdis C.A. Skin barrier damage after exposure to paraphenylenediamine. J. Allergy Clin. Immunol., 2020, vol. 145, no. 2, pp. 619–631.e2. DOI: 10.1016/j.jaci.2019.11.023
  13. Brown S.J., McLean W.H.I. Eczema genetics: current state of knowledge and future goals. J. Invest. Dermatol., 2009, vol. 129, no. 3, pp. 543–552. DOI: 10.1038/jid.2008.413
  14. Gupta J., Margolis D.J. Filaggrin gene mutations with special reference to atopic dermati-tis. Curr. Treat. Options Allergy, 2020, vol. 7, no. 3, pp. 403–413. DOI: 10.1007/s40521-020-00271-x
  15. Smit L., Timmerman J., Heederik D., Spee T., Rooy V.F., Krop E., Koppelman G., Rustemeyer T. Contact dermatitis and respiratory symptoms in the construction industry: The role of filaggrin gene variants. Eur. Respir. J., 2015, vol. 46, pp. OA1458. DOI: 10.1183/13993003.con¬gress-2015.OA1458
  16. de Jongh C.M., Khrenova L., Verberk M.M., Calkoen F., van Dijk F.J., Voss H., John S.M., Kezic S. Loss-of-function polymorphisms in the filaggrin gene are associated with an increased susceptibility to chronic irritant contact dermatitis: a case-control study. Br. J. Dermatol., 2008, vol. 159, no. 3, pp. 621–627. DOI: 10.1111/j.1365-2133.2008.08730.x
  17. Izmerova N.I., Kolyaskina M.M., Ivchenko E.V. Determination of filaggrin gene polymorphism to assess skin barrier function in patients with occupational allergic dermatoses. Meditsina truda i promyshlennaya ekologiya, 2015, no. 9, pp. 61–62 (in Russian).
  18. Visser M.J., Landeck L., Campbell L.E., McLean W.H.I., Weidinger S., Calkoen F., John S.M., Kezic S. Impact of atopic dermatitis and loss‐of‐function mutations in the filaggrin gene on the development of occupational irritant contact dermatitis. Br. J. Dermatol., 2013, vol. 168, no. 2, pp. 326–332. DOI: 10.1111/bjd.12083
  19. Landeck L., Visser M., Skudlik C., Brans R., Kezic S., John S.M. Clinical course of occupational irritant contact dermatitis of the hands in relation to filaggrin genotype status and atopy. Br. J. Dermatol., 2012, vol. 167, no. 6, pp. 1302–1309. DOI: 10.1111/bjd.12035
  20. Macan J., Rimac D., Kezic S., Varnai V.M. Occupational and non-occupational allergic contact dermatitis: A follow-up study. Dermatology, 2013, vol. 227, no. 4, pp. 321–329. DOI: 10.1159/000354763
  21. Morizane S., Sunagawa K., Nomura H., Ouchida M. Aberrant serine protease activities in atopic dermatitis. J. Dermatol. Sci., 2022, vol. 107, no. 1, pp. 2–7. DOI: 10.1016/j.jdermsci.
    2022.06.004
  22. Lan C.-C.E., Tu H.-P., Wu C.-S., Ko Y.-C., Yu H.-S., Lu Y.-W., Li W.-C., Chen Y.-C., Chen G.-S. Distinct SPINK5 and IL-31 polymorphisms are associated with atopic eczema and non-atopic hand dermatitis in Taiwanese nursing population. Exp. Dermatol., 2011, vol. 20, no. 12, pp. 975–979. DOI: 10.1111/j.1600-0625.2011.01374.x
  23. Ali A., Moinuddin A.S., Allarakha S., Fatima S., Ali S.A., Habib S. Risk of carcinogenicity associated with synthetic hair dyeing formulations: A biochemical view on action mechanisms, genetic variation and prevention. Ind. J. Clin. Biochem., 2022, vol. 37, no. 4, pp. 399–409. DOI: 10.1007/s12291-022-01051-x
  24. Wang B.-J., Shiao J.-S., Chen C.-J., Lee Y.-C., Guo Y.-L. Tumour necrotizing factor-α promoter and GST-T1 genotype predict skin allergy to chromate in cement workers in Taiwan. Contact Dermatitis, 2007, vol. 57, no. 5, pp. 309–315. DOI: 10.1111/j.1600-0536.2007.01242.x
  25. Medjani S., Chellat-Rezgoune D., Kezai T., Chidekh M., Abadi N., Satta D. Association of CYP1A1, GSTM1 and GSTT1 gene polymorphisms with risk of prostate cancer in Algerian population. Afr. J. Urol., 2020, vol. 26, pp. 44. DOI: 10.1186/s12301-020-00049-2
  26. Levchenko A.S., Vorob’eva A.A., Mezentseva O.Iu., Piskunov V.S., Bushueva O.Iu., Po-lonikov A.V. Polymorphism of glutathione-S-transferase genes and growth factors in patients with chronic rhinosinusitis. Rossiiskaya rinologiya, 2019, vol. 27, no. 1, pp. 9–14. DOI: 10.17116/ros-rino2019270119 (in Russian).
  27. Sanchez-Siles M., Pelegrin-Hernandez J.P., Hellin-Meseguer D., Guerrero-Sanchez Y., Corno-Caparros A., Cabezas-Herrera J., Pastor-Quirante F., Fernandez-Ruiz J.A. [et al.]. Genotype of null polymorphisms in genes GSTM1, GSTT1, CYP1A1, and CYP1A12A (rs4646903 T>C)/CYP1A12C (rs1048943 A>G) in patients with larynx cancer in Southeast Spain. Cancers (Basel), 2020, vol. 12, no. 9, pp. 2478. DOI: 10.3390/cancers12092478
  28. Kouzmina L.P., Izmerova N.I., Kolyaskina M.M. Role of polymorphous genes of xenobiotics biotransformation system in occupational allergic dermatoses pathogenesis. Meditsina truda i promyshlennaya ekologiya, 2011, no. 7, pp. 17–23 (in Russian).
  29. Kukal S., Thakran S., Kanojia N., Yadav S., Mishra M.K., Guin D., Singh P., Kukreti R. Genic-intergenic polymorphisms of CYP1A genes and their clinical impact. Gene, 2023, vol. 857, pp. 147171. DOI: 10.1016/j.gene.2023.147171
  30. Lazarashvili N.A. Role of “oxidant-antioxidant” system and genetic biochemical polymorphism in pathogenesis of occupational allergic dermatosis. Meditsina truda i promyshlennaya ekologiya, 2007, no. 9, pp. 16–22 (in Russian).
  31. Patel K., Nixon R. Irritant contact dermatitis – A review. Curr. Dermatol. Rep., 2022, vol. 11, no. 2, pp. 41–51. DOI: 10.1007/s13671-021-00351-4
  32. Wang L., Zhou H. A meta-analysis of the relationship between tumor necrosis
    fac¬tor-α polymorphisms and psoriasis. Dermatology, 2021, vol. 237, no. 1, pp. 39–45. DOI: 10.1159/000502255
  33. Dai Y., Leng S., Li L., Niu Y., Huang H., Cheng J., Zheng Y. Genetic polymorphisms of cytokine genes and risk for trichloroethylene-induced severe generalized dermatitis: a case-control study. Biomarkers, 2004, vol. 9, no. 6, pp. 470–478. DOI: 10.1080/13547500400026920
  34. de Jongh C.M., John S.M., Bruynzeel D.P., Calkoen F., van Dijk F.J.H., Khrenova L., Rustemeyer T., Verberk M.M., Kezic S. Cytokine gene polymorphisms and susceptibility to chronic irritant contact dermatitis. Contact Dermatitis, 2008, vol. 58, no. 5, pp. 269–277. DOI: 10.1111/j.1600-0536.2008.01317.x
  35. Landeck L., Visser M., Kezic S., John S.M. Impact of tumour necrosis factor-α polymor-phisms on irritant contact dermatitis. Contact Dermatitis, 2012, vol. 66, no. 4, pp. 221–227. DOI: 10.1111/j.1600-0536.2011.02045.x
  36. Davis J.A., Visscher M.O., Wickett R.R., Hoath S.B. Influence of tumour necrosis factor-α polymorphism-308 and atopy on irritant contact dermatitis in healthcare workers. Contact Dermatitis, 2010, vol. 63, no. 6, pp. 320–332. DOI: 10.1111/j.1600-0536.2010.01778.x
  37. Shekhar S., Yadav A.K., Khosla A., Solanki P.R. Review – Interleukins profiling for biosensing applications: possibilities and the future of disease detection. ECS Sensors Plus, 2022, vol. 1, no. 4, pp. 041601. DOI: 10.1149/2754-2726/ac9227
  38. She Y.X., Yu Q.Y., Tang X.X. Role of interleukins in the pathogenesis of pulmonary fibrosis. Cell Death Discov., 2021, vol. 7, no. 1, pp. 52. DOI: 10.1038/s41420-021-00437-9
  39. Shagalina A.U., Bakirov A.B., Masyagutova L.M., Karimov D.O. Predicting the risk for occupational allergic skin diseases development. Meditsina truda i ekologiya cheloveka, 2015, no. 1, pp. 52–56 (in Russian).
  40. Shagalina A.U., Bakirov A.B., Masyagutova L.M., Karimov D.O. New opportunities in prediction of risk for development of professional allergic diseases. Permskii meditsinskii zhurnal, 2014, vol. 31, no. 5, pp. 69–74 (in Russian).
  41. Khashaba E.O., Gaballah M.A., State A.F., Elwassefy M. Association between IL16 gene polymorphism and allergic contact dermatitis among construction workers. Immunol. Immunogenetics Insights, 2019, vol. 11. DOI: 10.1177/1178634519880556
  42. Landeck L., Visser M., Kezic S., John S.M. IL1A-889 C/T gene polymorphism in irritant contact dermatitis. J. Eur. Acad. Dermatol. Venereol., 2013, vol. 27, no. 8, pp. 1040–1043. DOI: 10.1111/j.1468-3083.2012.04474.x
  43. Yuksel B., Yildirim S. Analysis of IL-1Ra and IL-4 gene VNTRS polymorphisms among dental laboratory technicians: a genotype-phenotype study. Inonu Universitesi Saglık Hizmetleri Meslek Yuksek Okulu Dergisi, 2021, vol. 9, no. 3, pp. 831–845. DOI: 10.33715/inonusaglik.849794
  44. Lumkul L., Wongyikul P., Kulalert P., Sompornrattanaphan M., Lao-Araya M., Chuama-nochan M., Nochaiwong S., Phinyo P. Genetic association of beta-lactams-induced hypersensitiv-ity reactions: A systematic review of genome-wide evidence and meta-analysis of candidate genes. World Allergy Organ. J., 2023, vol. 16, no. 9, pp. 100816. DOI: 10.1016/j.waojou.2023.100816
  45. Yucesoy B., Talzhanov Y., Barmada M.M., Johnson V.J., Kashon M.L., Baron E., Wilson N.W., Frye B. [et al.]. Genetic basis of irritant susceptibility in health care workers. J. Occup. Environ. Med., 2016, vol. 58, no. 8, pp. 753–759. DOI: 10.1097/JOM.0000000000000784
  46. Jurisic V., Vukovic V., Obradovic J., Gulyaeva L.F., Kushlinskii N.E., Djordjevic N. EGFR polymorphism and survival of NSCLC patients treated with TKIs: A systematic review and meta-analysis. J. Oncol., 2020, vol. 2020, pp. 1973241. DOI: 10.1155/2020/1973241
  47. Adikusuma W., Irham L.M., Chou W.-H., Wong H.S.-C., Mugiyanto E., Ting J., Perwit-asari D.A., Chang W.-P., Chang W.-C. Drug repurposing for atopic dermatitis by integration of gene networking and genomic information. Front. Immunol., 2021, vol. 12, pp. 724277. DOI: 10.3389/fimmu.2021.724277
  48. Kulisic S.M., Takahashi M., Peric M.H., Radovic V.M., Toncic R.J. Immunohistochemical analysis of adhesion molecules e-selectin, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 in inflammatory lesions of atopic dermatitis. Life (Basel), 2023, vol. 13, no. 4, pp. 933. DOI: 10.3390/life13040933
Received: 
13.10.2023
Approved: 
07.12.2023
Accepted for publication: 
20.12.2023

You are here