Alternaria toxins as a risk factor for population health
I.V. Aksenov1, I.B. Sedova1, Z.A. Chalyy1, V.A. Tutelyan1,2
1Federal Research Centre of Nutrition, Biotechnology and Food Safety, 2/14 Ust’inskii proezd, Moscow, 109240, Russian Federation
2I.M. Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg 2, Moscow, 119991, Russian Federation
Alternaria toxins are toxic metabolites of mold fungi of the genus Alternaria, which are widespread in nature. The purpose of the review was to characterize Alternaria toxins most frequently found in food products and posing a real threat to public health: alternariol (AOH) and its monomethyl ether (AME), altenuene (ALT), tentoxin (TEN), and tenuazonic acid (TeA). The existing toxicological data are insufficient to establish a value of provisional tolerable intake of Alternaria toxins. Based on the chemical structure the daily threshold of toxicological concern was determined: TeA and TEN, 1500 ng/kg b.w.; AOH and AME (taking into account their genotoxicity), 2.5 ng/kg b.w. Currently, the content of Alternaria toxins in food products is not regulated at the national or international levels. Liquid chromatography coupled to (tandem) mass spectrometry is the most preferred method of identification and quantification of Alternaria toxins. Research results indicate significant contamination with Alternaria toxins of food raw materials and products of their processing (including cereals and oilseeds crops; vegetables and fruits, spices, and baby food). Processing of raw materials contaminated with Alternaria toxins contributes, as a rule, to reducing their content in the ready-to-eat product, but does not allow for complete elimination of toxins.
Children of the first three years of life are a population group under the greatest exposure to Alternaria toxins. At the same time, an intake of Alternaria toxins with a diet may exceed the threshold of toxicological concern and pose a real threat to health. The data presented in the review characterize Alternaria toxins as a significant risk factor for public health. To manage the corresponding risk, including through hygienic regulation, it is necessary to conduct additional research on the content of priority Alternaria toxins (AOH, AME, TeA, TEN, ALT) in food products, as well as clarify dose-dependent effects of their toxic action in order to minimize any possible adverse effects of Alternaria toxins on public health in the Russian Federation.
- Kravchenko L.V., Tutelyan V.A. Biosafety. Natural contaminants of food mycotoxin. Vo-prosy pitaniya, 2005, vol. 74, no. 3, pp. 3–13 (in Russian).
- Gannibal Ph.B. Factors affecting Alternaria appearance in grains in European Russia. Sel’skokhozyaistvennaya biologiya [Agricultural Biology], 2018, vol. 53, no. 3, pp. 605–615. DOI: 10.15389/agrobiology.2018.3.605eng
- EFSA on Contaminants in the Food Chain (CONTAM). Scientific Opinion on the risks for animal and public health related to the presence of Alternaria toxins in feed and food. EFSA Jour-nal, 2011, vol. 9, no. 10, pp. 2407. DOI: 10.2903/j.efsa.2011.2407
- De Oliveira R.C., Carnielli-Queiroz L., Correa B. Epicoccum sorghinum in food: occur-rence, genetic aspects and tenuazonic acid production. Current Opinion in Food Science, 2018, vol. 23, pp. 44–48. DOI: 10.1016/j.cofs.2018.05.011
- Thomma B.P.H.J. Alternaria spp.: from general saprophyte to specific parasite. Mol. Plant Pathol., 2003, vol. 4, no. 4, pp. 225–236. DOI: 10.1046/j.1364-3703.2003.00173.x
- Asam S., Habler K., Rychlik M. Determination of tenuazonic acid in human urine by means of a stable isotope dilution assay. Anal. Bioanal. Chem., 2013, vol. 405, no. 12, pp. 4149–4158. DOI: 10.1007/s00216-013-6793-5
- Fraeyman S., Devreese M., Broekaert N., De Mil T., Antonissen G., De Baere S., De Backer P., Rychlik M., Croubels S. Quantitative Determination of Tenuazonic Acid in Pig and Broiler Chicken Plasma by LC-MS/MS and Its Comparative Toxicokinetics. J. Agric. Food Chem., 2015, vol. 63, no. 38, pp. 8560–8567. DOI: 10.1021/acs.jafc.5b02828
- Schuchardt S., Ziemann C., Hansen T. Combined toxicokinetic and in vivo gentotoxicity study on Alternaria toxins. EFSA supporting publications, 2014, vol. 11, no. 11, pp. EN-679. DOI: 10.2903/sp.efsa.2014.EN-672
- Fehr M., Pahlke G., Fritz J., Christensen M.O., Boege F., Altemöller M., Podlech J., Marko D. Alternariol acts as a topoisomerase poison, preferentially affecting the IIα isoform. Mol. Nutr. Food Res., 2009, vol. 53, no. 4, pp. 441–451. DOI: 10.1002/mnfr.200700379
- Chen A., Mao X., Sun Q., Wei Z., Li J., You Y., Zhao J., Jiang G. [et al.]. Alternaria Mycotoxins: An Overview of Toxicity, Metabolism, and Analysis in Food. J. Agric. Food Chem., 2021, vol. 69, no. 28, pp. 7817−7830. DOI: 10.1021/acs.jafc.1c03007
- Frizzell C., Ndossi D., Kalayou S., Eriksen G.S., Verhaegen S., Sørlie M., Elliott C.T., Ropstad E., Connolly L. An in vitro investigation of endocrine disrupting effects of the mycotoxin alternariol. Toxicol. Appl. Pharmacol., 2013, vol. 271, no. 1, pp. 64–71. DOI: 10.1016/
j.taap.2013.05.002 - Liu Y., Rychlik M. Development of a stable isotope dilution LC-MS/MS method for the Alternaria toxins tentoxin, dihydrotentoxin, and isotentoxin. J. Agric. Food Chem., 2013, vol. 61, no. 12, pp. 2970–2978. DOI: 10.1021/jf305111w
- Schrader T.J., Cherry W., Soper K., Langlois I. Further examination of the effects of nitrosylation on Alternaria alternata mycotoxin mutagenicity in vitro. Mutat. Res., 2006, vol. 606, no. 1–2, pp. 61–71. DOI: 10.1016/j.mrgentox.2006.02.008
- Yekeler H., Bitmis K., Ozcelik N., Doymaz M.Z., Calta M. Analysis of toxic effects of Alternaria toxins on esophagus of mice by light and electron microscopy. Toxicol. Pathol., 2001, vol. 29, no. 4, pp. 492–497. DOI: 10.1080/01926230152499980
- Crudo F., Varga E., Aichinger G., Galaverna G., Marko D., Dall’Asta C., Dellafiora L. Co-Occurrence and Combinatory Effects of Alternaria Mycotoxins and other Xenobiotics of Food Origin: Current Scenario and Future Perspectives. Toxins (Basel), 2019, vol. 11, no. 11, pp. 640. DOI: 10.3390/toxins11110640
- Pavicich M.A., De Boevre M., Vidal A., Mikula H., Warth B., Marko D., De Saeger S., Patriarca A. Natural Occurrence, Exposure Assessment & Risk Characterization of Alternaria Mycotoxins in Apple By Products in Argentina. Expo Health, 2023. DOI: 10.1007/s12403-023-00544-1
- Gross M., Curtui V., Ackermann Y., Latif H., Usleber E. Enzyme Immunoassay for Tenuazonic Acid in Apple and Tomato Products. J. Agric. Food Chem., 2011, vol. 59, no. 23, pp. 12317–12322. DOI: 10.1021/jf203540y
- Castañares E., Pavicich M.A., Dinolfo M.I., Moreyra F., Stenglein S.A., Patriarca A. Natu-ral occurrence of Alternaria mycotoxins in malting barley grains in the main producing region of Argentina. J. Sci. Food Agric., 2020, vol. 100, no. 3, pp. 1004−1011. DOI: 10.1002/jsfa.10101
- Bernal A.R.R., Reynoso C.M., Garcia Londoño V.A., Broggi L.E., Resnik S.L. Alternaria toxins in Argentinean wheat, bran, and flour. Food Addit. Contam. Part B Surveill., 2019, vol. 12, no. 1, pp. 24–30. DOI: 10.1080/19393210.2018.1509900
- Mujahid C., Savoy M.-C., Baslé Q., Woo P.M., Ee E.C.Y., Mottier P., Bessaire T. Levels of
Alternaria Toxins in Selected Food Commodities Including Green Coffee. Toxins (Basel), 2020, vol. 12, no. 9, pp. 595. DOI: 10.3390/toxins12090595 - Kiseleva M.G., Sedova I.B., Chalyy Z.A., Zakharova L.P., Aristarkhova T.V., Tutelyan V.A. Multi-mycotoxin screening of food grain produced in Russia in 2018. Sel’skokhozyaistvennaya biologiya [Agricultural Biology], 2021, vol. 56, no. 3, pp. 559–577. DOI: 10.15389/agrobiology.
2021.3.559eng - Orina A.S., Gavrilova O.P., Gagkaeva T.Yu., Gogina N.N. Contamination of grain in West Siberia by Alternaria fungi and their mycotoxins. Vestnik zashchity rastenii, 2021, vol. 104, no. 3, pp. 153–162. DOI: 10.31993/2308-6459-2021-104-3-15019 (in Russian).
- Jiang D., Wei D., Li H., Wang L., Jiang N., Li Y., Wang M. Natural occurrence of Alter-naria mycotoxins in wheat and potential of reducing associated risks using magnolol. J. Sci. Food Agric., 2021, vol. 101, no. 7, pp. 3071–3077. DOI: 10.1002/jsfa.10901
- Puvaca N., Avantaggiato G., Merkuri J., Vukovic G., Bursic V., Cara M. Occurrence and Determination of Alternaria Mycotoxins Alternariol, Alternariol Monomethyl Ether, and Tentoxin in Wheat Grains by QuEChERS Method. Toxins (Basel), 2022, vol. 14, no. 11, pp. 791. DOI: 10.3390/toxins14110791
- Sedova I.B., Zakharova L.P., Chalyy Z.A., Tutelyan V.A. Mycotoxin screening in food grain produced in the Russian Federation in 2020. Immunopathology, allergology, infectology, 2023, no. 2, pp. 77–85. DOI: 10.14427/jipai.2023.2.77 (in Russian).
- Zhao K., Shao B., Yang D., Li F., Zhu J. Natural occurrence of Alternaria toxins in wheat-based products and their dietary exposure in China. PLoS One, 2015, vol. 10, no. 6, pp. e0132019. DOI: 10.1371/journal.pone.0132019
- Ji X., Xiao Y., Lyu W., Li M., Wang W., Tang B., Wang X., Yang H. Probabilistic Risk Assessment of Combined Exposure to Deoxynivalenol and Emerging Alternaria Toxins in Cereal-Based Food Products for Infants and Young Children in China. Toxins (Basel), 2022, vol. 14, no. 8, pp. 509. DOI: 10.3390/toxins14080509
- Woo S.Y., Lee S.Y., Jeong T.K., Park S.M., Auh J.H., Shin H.-S., Chun H.S. Natural Occurrence of Alternaria Toxins in Agricultural Products and Processed Foods Marketed in South Korea by LC–MS/MS. Toxins (Basel), 2022, vol. 14, no. 12, pp. 824. DOI: 10.3390/toxins14120824
- Scott P.M., Zhao W., Feng S., Benjamin P.-Y. Alternaria toxins alternariol and alternariol monomethyl ether in grain foods in Canada. Mycotoxin Res., 2012, vol. 28, no. 4, pp. 261–266. DOI: 10.1007/s12550-012-0141-z
- Scheilbenzuber S., Dick F., Bretträger M., Gastl M., Asam S., Rychlik M. Development of analytical methods to study the effect of malting on levels of free and modified forms of Alternaria mycotoxins in barley. Mycotoxin Res., 2022, vol. 38, no. 2, pp. 137–146. DOI: 10.1007/s12550-022-00455-1
- Hickert S., Bergmann M., Ersen S., Cramer B., Humpf H.-U. Survey of Alternaria toxin contamination in food from the German market, using a rapid HPLC-MS/MS approach. Mycotoxin Res., 2016. vol. 32, no. 1, pp. 7–18. DOI: 10.1007/s12550-015-0233-7
- Lopez P., Venema D., de Rijk T., de Kok A., Scholten J.M., Mol H.G.J., de Nijs M. Occurrence of Alternaria toxins in food products in The Netherlands. Food Control, 2016, vol. 60, pp. 196–204. DOI: 10.1016/j.foodcont.2015.07.032
- Hickert S., Hermes L., Marques L.M.M., Focke C., Cramer B., Lopes N.P., Flett B., Humpf H.-U. Alternaria toxins in South African sunflower seeds: cooperative study. Mycotoxin Res., 2017, vol. 33, no. 4, pp. 309–321. DOI: 10.1007/s12550-017-0290-1
- Sanzani S.M., Gallone T., Garganese F., Caruso A.G., Amenduni M., Ippolito A. Con-tamination of fresh and dried tomato by Alternaria toxins in southern Italy. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 2019, vol. 36, no. 5, pp. 789–799. DOI: 10.1080/19440049.2019.1588998
- Ji X., Deng T., Xiao Y., Jin C., Lyu W., Wu Z., Wang W., Wang X. [et al.]. Emerging Alternaria and Fusarium mycotoxins in tomatoes and derived tomato products from the China market:
Occurrence, methods of determination, and risk evaluation. Food Control, 2023, vol. 145, pp. 109464. DOI: 10.1016/j.foodcont.2022.109464 - Terminiello L., Patriarca A., Pose G., Fernandez Pinto V. Occurrence of alternariol, alter-nariol monomethyl ether and tenuazonic acid in Argentinean tomato puree. Mycotoxin Res., 2006, vol. 22, no. 4, pp. 236–240. DOI: 10.1007/BF02946748
- Walravens J., Mikula H., Rychlik M., Asam S., Devos T., Njumbe Ediage E., Di Mavungu J.D., Jacxsens L. [et al.]. Validated UPLC-MS/MS Methods To Quantitate Free and Conjugated Alternaria Toxins in Commercially Available Tomato Products and Fruit and Vegetable Juices in Belgium. J. Agric. Food Chem., 2016, vol. 64, no. 24, pp. 5101–5109. DOI: 10.1021/acs.jafc.6b01029
- Maldonado Haro M.L., Cabrera G., Fernandez Pinto V., Patriarca A. Alternaria toxins in tomato products from the Argentinean market. Food Control, 2023, vol. 147, no. 11, pp. 109607. DOI: 10.1016/j.foodcont.2023.109607
- Tang Y., Mu L., Cheng J., Du Z., Yang Y. Determination of Multi-Class Mycotoxins in Apples and Tomatoes by Combined Use of QuEChERS Method and Ultra-High-Performance Liquid Chromatography Tandem Mass Spectrometry. Food Analytical Methods, 2020, vol. 13, pp. 1381–1390. DOI: 10.1007/s12161-020-01753-z
- Lan F., Jiang F., Zang H., Wang Z. Saturated brine dissolution and liquid-liquid extraction combined with UPLC-MS/MS for the detection of typical Alternaria toxins in pear paste. J. Sci. Food Agric., 2023, vol. 103, no. 14, pp. 6861–6870. DOI: 10.1002/jsfa.12770
- Wei D., Wang Y., Jiang D., Feng X., Li J., Wang M. Survey of Alternaria Toxins and Oth-er Mycotoxins in Dried Fruits in China. Toxins (Basel), 2017, vol. 9, no. 7, pp. 200. DOI: 10.3390/toxins9070200
- Chalyy Z.A., Kiseleva M.G., Sedova I.B., Minaeva L.P., Sheveleva S.A., Tutelyan V.A. Dried fruits marketed in Russia: multi-mycotoxin contamination. Voprosy pitaniya, 2021, vol. 90, no. 1 (533), pp. 33–39. DOI: 10.33029/0042-8833-2021-90-1-33-39 (in Russian)
- Wang Y., Nie J.-Y., Yan Z., Li Z., Cheng Y., Farooq S. Multi-mycotoxin exposure and risk assessment for Chinese consumption of nuts and dried fruits. Journal of Integrative Agriculture, 2018, vol. 17, no. 7, pp. 1676–1690. DOI: 10.1016/S2095-3119(18)61966-5
- Zwickel T., Klaffke H., Richards K., Rychlik M. Development of a high performance liquid chromatography tandem mass spectrometry based analysis for the simultaneous quantification of various Alternaria toxins in wine, vegetable juices and fruit juices. J. Chromatogr. A, 2016, vol. 1455, pp. 74–85. DOI: 10.1016/j.chroma.2016.04.066
- Chalyy Z.A., Kiseleva M.G., Sedova I.B., Tutelyan V.A. Mycotoxins in spices consumed in Russia. Voprosy pitaniya, 2023, vol. 92, no. 2 (546), pp. 26–34. DOI: 10.33029/0042-8833-2023-92-2-26-34 (in Russian).
- Gotthardt M., Asam S., Gunkel K., Moghaddam A.F., Baumann E., Kietz R., Rychlik M. Quantitation of Six Alternaria Toxins in Infant Foods Applying Stable Isotope Labeled Standards. Front. Microbiol., 2019, vol. 10, pp. 109. DOI: 10.3389/fmicb.2019.00109
- Braun D., Eiser M., Puntscher H., Marko D., Warth B. Natural contaminants in infant food: The case of regulated and emerging mycotoxins. Food Control, 2020, vol. 123, pp. 107676. DOI: 10.1016/j.foodcont.2020.107676
- Asam S., Rychlik M. Potential health hazards due to the occurrence of the mycotoxin tenuazonic acid in infant food. Eur. Food Res. Technol., 2013, vol. 236, pp. 491–497. DOI: 10.1007/s00217-012-1901-x
- Puntscher H., Kütt M.-L., Skrinjar P., Mikula H., Podlech J., Fröhlich J., Marko D., Warth B. Tracking emerging mycotoxins in food: Development of an LC-MS/MS method for free and modified Alternaria toxins. Anal. Bioanal. Chem., 2018, vol. 410, no. 18, pp. 4481–4494. DOI: 10.1007/s00216-018-1105-8
- Scott P., Kanhere S. Stability of Alternaria toxins in fruit juices and wine. Mycotoxin Res., 2001, vol. 17, no. 1, pp. 9–14. DOI: 10.1007/BF02946112
- Hajnal E.J., Mastilovic J., Bagi F., Orcic D., Budakov D., Kos J., Savic Z. Effect of Wheat Milling Process on the Distribution of Alternaria Toxins. Toxins (Basel), 2019, vol. 11, no. 3, pp. 139. DOI: 10.3390/toxins11030139
- Estiarte N., Crespo-Sempere A., Marín S., Ramos A.J., Worobo R.W. Stability of alter-nariol and alternariol monomethyl ether during food processing of tomato products. Food Chem., 2018, vol. 245, pp. 951–957. DOI: 10.1016/j.foodchem.2017.11.078
- Combina M., Dalcero A., Varsavsky E., Torres A., Etcheverry M., Rodriguez M., Gonza-lez Q.H. Effect of heat treatments on stability of altemariol, alternariol monomethyl ether and ten-uazonic acid in sunflower flour. Mycotoxin Res., 1999, vol. 15, no. 1. pp. 33–38. DOI: 10.1007/BF02945212.
- Siegel D., Feist M., Proske M., Koch M., Nehls I. Degradation of the Alternaria mycotox-ins alternariol, alternariol monomethyl ether, and altenuene upon bread baking. J. Agric. Food Chem., 2010, vol. 58, no. 17, pp. 9622–9630. DOI: 10.1021/jf102156w
- Arcella D., Eskola M., Gomez Ruiz J.A. Dietary exposure assessment to Alternaria toxins in the European population, EFSA report. EFSA Journal, 2016, vol. 14, no. 12, pp. 4654. DOI: 10.2903/j.efsa.2016.4654