Extract of european spruce strobiles as a promising tool to minimize the risks of inflammation
D.K. Gulyaev, D.Yu. Apushkin, A.I. Andreev, A.S. Suldin, P.S. Mashchenko, T.A. Utushkina, K.E. Yakushina
Perm State University, 15 Bukireva St., Perm, 614068, Russian Federation
The article is devoted to examining anti-inflammatory activity of dry aqueous extract of European spruce (Picea abies) strobiles using different routes of administration.
Strobiles of European spruce for extracts were harvested on the territory of the Perm region of the Russian Federation in a mixed forest with a predominance of European spruce and Scots pine (Pinus sylvestris). Dry aqueous extract was obtained according to the original patented method. Procyanidins content in spruce strobiles and dry extracts was determined by using acid cleavage of procyanidins to anthocyanidins according to the Porter method. Anti-inflammatory activity was established by using carrageenan-induced paw edema in rats. White laboratory outbred Wistar rats were used in the experiment.
According to the results of the study, the procyanidin content was found to equal approximately 13 % in the samples of spruce strobiles. Intraperitoneal administration of dry extract of strobile spruce at a dose of 100 mg/kg was established to induce a pronounced anti-inflammatory activity. Intraperitoneal administration of smaller doses of strobile extract resulted in a pronounced anti-inflammatory activity at a dose of 50 mg/kg. A dose of 10 mg/kg successfully suppressed inflammation (50 % edema suppression) 1 and 3 hours after carrageenan administration (p < 0.05) according to hydrometric data, but this was not confirmed by photometric data. Oral administration of the extract showed no anti-inflammatory activity. With the rectal route of administration, no pronounced anti-inflammatory activity was found in the studied extract.
The extract of spruce strobiles obtained by the original method contains 56 % procyanidins and exhibits pronounced anti-inflammatory activity when administered intraperitoneally. The use of the extract in oral and rectal routes of administration requires more in-depth study.
- Rastogi S., Arora V., Bhalla V. Pycnogenol: the hercules of antioxidants. Indian J. Drugs., 2015, vol. 3, pp. 5–10.
- Santos-Buelga C., Scalbert A. Proanthocyanidins and tannin-like compounds – nature, occurrence, dietary intake and effects on nutrition and health. J. Sci. Food Agric., 2000, vol. 80, no. 7, pp. 1094–1117.
- Yin M., Zhang P., Yu F., Zhang Z., Cai Q., Lu W., Li B., Qin W. [et al.]. Grape seed procyanidin B2 ameliorates hepatic lipid metabolism disorders in db/db mice. Molecular Medicine Reports, 2017, vol. 16, no. 3, pp. 2844–2850. DOI: 10.3892/mmr.2017.6900
- Sun P., Wang T., Chen L., Yu B.W., Jia Q., Chen K., Fan H., Li Y., Wang H. Trimer procyanidin oligomers contribute to the protective effects of cinnamon extracts on pancreatic β-cells in vitro. Acta Pharmacol. Sin., 2016, vol. 37, no. 8, pp. 1083–1090. DOI: 10.1038/aps.2016.29
- Shi C., Zhang H., Wang X., Jin B., Jia Q., Li Y., Yang Y. Cinnamtannin D1 attenuates autoimmune arthritis by regulating the balance of Th17 and Treg cells through inhibition of Aryl Hydrocarbon Receptor expression. Pharmacol. Res., 2020, vol. 151, pp. 104513. DOI: 10.1016/j.phrs.2019.104513
- Fujita K., Kuge K., Ozawa N., Sahara S., Zaiki K., Nakaoji K., Hamada K., Takenaka Y. [et al.]. Cinnamtannin B-1 promotes migration of mesenchymal stem cells and accelerates wound healing in mice. PLoS One, 2015, vol. 10, no. 12, pp. e0144166. DOI: 10.1371/journal.pone.0144166
- Koteswari L.L., Kumari S., Kumar A.B., Malla R.R. A comparative anticancer study on procyanidin C1 against receptor positive and receptor negative breast cancer. Nat. Prod. Res., 2019, vol. 34, no. 22, pp. 3267–3274. DOI: 10.1080/14786419.2018.1557173
- Chen L., Yang Y., Yuan P., Yang Y., Chen K., Jia Q., Li Y. Immunosuppressive effects of A-type procyanidin oligomers from Cinnamomum tamala. Evid. Based Complement. Alternat. Med., 2014, vol. 2014, pp. 365258. DOI: 10.1155/2014/365258
- Diouf P.N., Stevanovic T., Cloutier A. Study on chemical composition, antioxidant and anti-inflammatory activities of hot water extract from Picea mariana bark and its proanthocyanidin-rich fractions. Food Chemistry. 2009, vol. 113, no. 4, pp. 897–902. DOI: 10.1016/j.foodchem.2008.08.016
- Vetal S., Bodhankar S.L., Mohan V., Thakurdesai P.A. Anti-inflammatory and anti-arthritic activity of type-A procyanidine polyphenols from bark of Cinnamomum zeylanicum in rats. Food Science and Human Wellness, 2013, vol. 2, no. 2, pp. 59–67. DOI: 10.1016/j.fshw.2013.03.003
- Pahwa R., Goyal A., Jialal I. Chronic Inflammation. StatPearls. Treasure Island (FL), StatPearls Publ., 2023.
- Porter L.J., Hrstich L.N., Chan B.G. The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochemistry, 1986, vol. 25, no. 1, pp. 223–230. DOI: 10.1016/S0031-9422(00)94533-3
- Studies in Natural Products Chemistry, Vol. 21. In: Atta-ur-Rahman ed. Amsterdam, Elsevier Science, 2000, 812 p., рр. 497–570.
- Apushkin D.Yu., Andreev A.I., Kovalenko I.I. Opticheskii (bezvodnyi) pletizmometr povyshaet effektivnost' doklinicheskikh issledovanii protivovospalitel'noi aktivnosti novykh soedinenii [Optical (anhydrous) plethysmometer improves the efficiency of preclinical studies of the anti-inflammatory activity of new compounds]. Vos'maya konferentsiya Rus-LASA: programma i tezisy dokladov, Pushchino, October 1–3, 2020, pp. 12–13 (in Russian).
- Apushkin D.Yu., Andreev A.I., Akhremenko E.A. Issledovanie protivovospalitel'noi aktivnosti ekstrakta shishek eli obyknovennoi s pomoshch'yu bezvodnogo pletizmometra [Study of the anti-inflammatory activity of Norway spruce cone extract using an anhydrous plethysmometer]. Devyataya nauchno-prakticheskaya konferentsiya spetsialistov po rabote s laboratornymi zhivotnymi (Rus-LASA-9): tezisy dokladov, Skolkovo, December 2–4, 2021 (in Russian).
- Anderson M.J. A new method for non-parametric multivariate analysis of variance. Austral. Ecology, 2001, vol. 26, no. 1, pp. 32–46.
- Terra X., Palozza P., Fernandez-Larrea J., Ardevol A., Blade C., Pujadas G., Salvado J., Arola L., Blay M.T. Procyanidin dimer B1 and trimer C1 impair inflammatory response signalling in human monocytes. Free Radic. Res., 2011, vol. 45, no. 5, pp. 611–619. DOI: 10.3109/10715762.2011.564165
- Tsang C., Auger C., Mullen W., Bornet A., Rouanet J.-M., Crozier A., Teissedre P.-L. The absorption, metabolism and excretion of flavan-3-ols and procyanidins following the ingestion of a grape seed extract by rats. Br. J. Nutr., 2005, vol. 94, no. 2, pp. 170–181. DOI: 10.1079/bjn20051480
- Weinert C.H., Wiese S., Rawel H.M., Esatbeyoglu T., Winterhalter P., Homann T., Kulling S.E. Methylation of catechins and procyanidins by rat and human catechol-o-methyltransferase: Metabolite profiling and molecular modeling studies. Drug Metab. Dispos., 2012, vol. 40, no. 2, pp. 353–359. DOI: 10.1124/dmd.111.041871
- Sano A., Yamakoshi J., Tokutake S., Tobe K., Kubota Y., Kikuchi M. Procyanidin B1 is detected in human serum after intake of proanthocyanidin-rich grape seed extract. Biosci. Biotechnol. Biochem., 2003, vol. 67, no. 5, pp. 1140–1143. DOI: 10.1271/bbb.67.1140