Job design for crane operators based on fatigue aspects and mental workload in Indonesia

View or download the full article: 
UDC: 
613.6.02
Authors: 

I. Pratiwi, S. Oktaviara

Organization: 

Universitas Muhammadiyah Surakarta, Jl. Jend. A Yani Tromol Pos 1 Pabelan, Surakarta 57102, Indonesia

Abstract: 

Terminal Teluk Lamong (TTL) in Indonesia is a company that operates in service sector managing a multipurpose terminal. It provides various services such as loading and unloading containers and dry bulk using integrated crane tools that employ the first semi-automatic facilities and infrastructure in Indonesia. Crane operators’ work involves risks of work accidents because they operate at heights and their job tasks require high concentration.
This study aimed to find out fatigue levels and mental workloads typical for workplaces of crane operators and to analyze and assess working conditions. The study results gave grounds for developing recommendations on how to improve workplaces of STS and GSU crane operators who deal with loading and unloading containers and dry bulk cargoes at a seaport.

The relevant data were obtained by questioning 56 STS and GSU crane operators working in four shifts, 6 hours each. We used an employee identity questionnaire as well as SOFI and NASA TLX questionnaires. The results were analyzed to obtain scores for estimating fatigue levels and mental workloads. Statistical analysis involved correlation and regression tests on two variables on STS and GSU crane operators. Upon completion, some recommendations were suggested as regards necessary changes into work process and longer rest in order to reduce fatigue and mental workloads for operators.

The SOFI questionnaire established medium fatigue levels of STS and GSU operators but mental workloads turned out to be high. The correlation test did not reveal any correlation between fatigue and mental workloads for STS crane operators.

It was shown that fatigue could be overcome by adequate rest, well-balanced diet rich with nutrients, and relevant exercise. At the same time, arranging work shifts more rationally, socializing, and training on the importance of fatigue awareness can reduce high mental workloads. The study results can help prevent or reduce increased fatigue and mental workloads that can lead to work accidents.

Keywords: 
SOFI method, NASA-TLX method, crane operator, Terminal Teluk Lamong, risks of work accidents, fatigue, mental workloads, statistical analysis, Indonesia
Pratiwi I., Oktaviara S. Job design for crane operators based on fatigue aspects and mental workload in Indonesia. Health Risk Analysis, 2023, no. 1, pp. 73–84. DOI: 10.21668/health.risk/2023.1.08.eng
References: 
  1. Kliping Berita Ketenagakerjaan 13 Januari 2020. Kementerian Ketenagakerjaan RI. Available at: http://perpus-takaan.kemnaker.go.id/admin/assets/product_img/pdf/13_Janu... (August 08, 2021) (in Indonesian).
  2. Caldwell J.A., Caldwell J.L., Thompson L.A., Lieberman H.R. Fatigue and its management in the workplace. Neurosci. Biobehav. Rev., 2019, vol. 96, pp. 272–289. DOI: 10.1016/j.neubiorev.2018.10.024
  3. Santos J., Carvalhais C., Ramos C., Coelho T., Monteiro P.R.R., Vaz M.A.P. Portuguese version of the Swedish Oc-cupational Fatigue Inventory (SOFI) among assembly workers: Cultural adaptation, reliability and validity. Int. J. Occup. Med. Environ. Health, 2017, vol. 30, no. 3, pp. 407–417. DOI: 10.13075/ijomeh.1896.00760
  4. Techera U., Bhandari S., Hallowell M., Littlejohn R. Impact of worker fatigue on hazard recognition skills. Constr. Res. Congr. 2020, 2020, pp. 306–314. DOI: 10.1061/9780784482872.034
  5. Lee S., Seong S., Park S., Lim J., Hong S., Cho Y., Kim H. Korean version of the swedish occupational fatigue inven-tory among construction workers: Cultural adaptation and psychometric evaluation. Int. J. Environ. Res. Public Health, 2021, vol. 18, no. 8, pp. 4302. DOI: 10.3390/ijerph18084302
  6. Saito K. Measurement of fatigue in industries. Ind. Health, 1999, vol. 37, no. 2, pp. 134–142. DOI: 10.2486/indhealth.37.134
  7. Soria-Oliver M., López J.S., Torrano F. Relations between mental workload and decision-making in an organizational setting. Psicol. Reflex. Crit., 2017, vol. 30, no. 1, pp. 7. DOI: 10.1186/s41155-017-0061-0
  8. González J.L., Moreno-Jiménez B., Garrosa E., López López A. Spanish version of the Swedish Occupational Fatigue Inventory (SOFI): Factorial replication, reliability and validity. Int. J. Ind. Ergon., 2005, vol. 35, no. 8, pp. 737–746. DOI: 10.1016/j.ergon.2005.02.007
  9. Åhsberg E., Gamberale F., Gustafsson K. Perceived fatigue after mental work: An experimental evaluation of a fatigue inventory. Ergonomics, 2000, vol. 43, no. 2, pp. 252–268. DOI: 10.1080/001401300184594
  10. Junaedi D., Rizkiyah N.D., Pratya D.B. Determination of the Optimal Number of Workers Using the NASA-TLX Method in Chemical Company, Indonesia. Int. J. Eng. Res. Adv. Technol., 2020, vol. 6, no. 7, pp. 51–56. DOI: 10.31695/ijerat.2020.3627
  11. Longo L., Rusconi F., Noce L., Barrett S. The importance of Human Mental Workload in Web design. WEBIST 2012, 8th Int. Conf. Web Inf. Syst. Technol., 2012, pp. 403–409. DOI: 10.5220/0003960204030409
  12. Hart S.G., Staveland L.E. Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Re-search. Hum. Ment. Workload. Adv. Psychol., 1988, no. 52, pp. 139–183.
  13. Chi S., Neubert M.S., Buranruk O., Limroongreungrat W., Eungpinichpong W., Puntumetakul R. Comparison of workload perception for original and modified cognitive tasks. Ind. Eng. Manag. Syst., 2019, vol. 18, no. 4, pp. 701–709. DOI: 10.7232/iems.2019.18.4.701
  14. Widiasih W., Nuha H. Workload Analysis Using Work Sampling and NASA-TLX for Employee of Private University in Surabaya. J. Ilm. Tek. Ind., 2019, vol. 18, no. 2, pp. 134–141. DOI: 10.23917/jiti.v18i2.8247
  15. Aulanko S., Tervo K. Modeling and analysis of harbor crane work efficiency using work cycle recognition. IEEE/ASME Int. Conf. Adv. Intell. Mechatronics, AIM, 2010, pp. 61–66. DOI: 10.1109/AIM.2010.5695907
  16. Suryadi A., Zadi F.I., Sukma D. Analisis Tingkat Beban Kerja Operator Automated Stacking Crane (Asc) Dengan Metode Nasa-TLX (National Aeronautics and Space Administration Task Load Index) Di Pt. Terminal Teluk Lamong Surabaya. Tekmapro J. Ind. Eng. Manag., 2018, vol. 13, no. 2, pp. 31–40. DOI: 10.33005/tekmapro.v13i2.40
  17. Jo J.-H., Kim S. Key performance indicator development for ship-to-shore crane performance assessment in container terminal operations. J. Mar. Sci. Eng., 2020, vol. 8, no. 1, pp. 6. DOI: 10.3390/JMSE8010006
  18. Mixter S., Mathiassen S.E., Hallman D. Alternations between physical and cognitive tasks in repetitive work–effect of cognitive task difficulty on fatigue development in women. Ergonomics, 2019, vol. 62, no. 8, pp. 1008–1022. DOI: 10.1080/00140139.2019.1614229
  19. Åhsberg E., Kecklund G., Åkerstedt T., Gamberale F. Shiftwork and different dimensions of fatigue. Int. J. Ind. Ergon., 2000, vol. 26, no. 4, pp. 457–465. DOI: 10.1016/S0169-8141(00)00007-X
  20. Åhsberg E., Fürst C.J. Dimensions of fatigue during radiotherapy: An application of the Swedish Occupational Fatigue Inventory (SOFI) on cancer patients. Acta Oncol., 2001, vol. 40, no. 1, pp. 37–43. DOI: 10.1080/028418601750071037
  21. Johansson S., Ytterberg C., Back B., Holmqvist L.W., von Koch L. The Swedish Occupational Fatigue Inventory in people with multiple sclerosis. J. Rehabil. Med., 2008, vol. 40, no. 9, pp. 737–743. DOI: 10.2340/16501977-0236
  22. Akyeampong J., Udoka S., Caruso G., Bordegoni M. Evaluation of hydraulic excavator Human-Machine Interface concepts using NASA TLX. Int. J. Ind. Ergon., 2014, vol. 44, no. 3, pp. 374–382. DOI: 10.1016/j.ergon.2013.12.002
  23. Campoya Morales A.F., Hernandez Arellano J.L., González Muñoz E.L., Maldonado Macías A.A. Development of the NASA-TLX Multi Equation Tool to Assess Workload. Int. J. Comb. Optim. Probl. Informatics, 2020, vol. 11, no. 1, pp. 50–58.
  24. Nikulin C., Lopez G., Piñonez E., Gonzalez L., Zapata P. NASA-TLX for predictability and measurability of in-structional design models: case study in design methods. Educ. Technol. Res. Dev., 2019, vol. 67, no. 2, pp. 467–493. DOI: 10.1007/s11423-019-09657-4
  25. Nur I., Iskandar H., Ade R.F. The measurement of nurses’ mental workload using NASA-TLX method (a case study).
    Malaysian J. Public Heal. Med., 2020, vol. 20, no. 1 (Special), pp. 60–63. DOI: 10.37268/MJPHM/VOL.20/NO.SPECIAL1/ART.705
  26. Nordbakke S. Driver fatigue and falling asleep – experience, knowledge and conduct among private drivers and pro-fessional drivers. Oslo, 2004, pp. 6.
  27. Theron W.J., Van Heerden G.M.J. Fatigue knowledge – a new lever in safety management. J. South. African Inst. Min. Metall., 2011, vol. 111, no. 1, pp. 1–10.
  28. Ramey S., MacQuarrie A., Cochrane A., McCann I., Johnston C.W., Batt A.M. Drowsy and dangerous? Fatigue in paramedics: an overview. Irish J. Paramed., 2019, vol. 4, no. 1. DOI: 10.32378/ijp.v4i1.175
  29. Mason S. Office Ergonomic: Practical Applications. Ergonomics, 2008, vol. 51, no. 11, pp. 1791–1793.
  30. Costa G. Shift work and health: Current problems and preventive actions. Saf. Health Work, 2010, vol. 1, no. 2, pp. 112–123. DOI: 10.5491/SHAW.2010.1.2.112
  31. Berlin C., Adams C. Production Ergonomics: Designing Work Systems to Support Optimal Human Performance. London, Ubiquity Press Publ., 2017. DOI: https://doi.org/10.5334/bbe
  32. Pratiwi I., Brillyanto V., Fitriadi R., Anis M., Rahman M.N.A. Postural evaluation and hand activity level at batik cap process using LUBA and ACGIH HAL methods. Int. J. Recent Technol. Eng., 2019, vol. 8, no. 3, pp. 2552–2560. DOI: 10.35940/ijrte.C4765.098319
  33. Njaka S., Mohd Yusoff D., Anua S.M., Kueh Y.C., Edeogu C.O. Musculoskeletal disorders (MSDs) and their associ-ated factors among quarry workers in Nigeria: A cross-sectional study. Heliyon, 2021, vol. 7, no. 2, pp. e06130. DOI: 10.1016/j.heliyon.2021.e06130
  34. Khandan M., Mirshekari F., Koorsani E., Mosaferchi S., Koohpaei A. Subjective Workload and Musculoskeletal Dis-orders among Workers of a Manufacturing Company in Iran. Biotech. Health Sci., 2018, vol. 5, no. 1, pp. e13599.
  35. Javaremi M.N., Wu D., Argall B. The Impact of Control Interface on Features of Heart Rate Variability. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., 2021, vol. 2021, pp. 7544–7550. DOI: 10.1109/EMBC46164.2021.9631053
Received: 
04.09.2022
Approved: 
20.02.2023
Accepted for publication: 
27.03.2023

You are here