Meta-analysis of the influence of gender and age on the seasonal dynamics of cerebral strokes

View or download the full article: 
UDC: 
613.1
Authors: 

N.V. Kuzmenko1,2, M.G. Pliss1,2, V.A. Tsyrlin1, М.М. Galagudza1

Organization: 

1Almazov National Medical Research Centre, 2 Akkuratova Str., Saint Petersburg, 197341, Russian Federation
2Pavlov First Saint Petersburg State Medical University, 6-8 L’va Tolstogo Str., Saint Petersburg, 197022,
Russian Federation

Abstract: 

The purpose of this work is to investigate dependence of the seasonal dynamics of HS (hemorrhagic strokes) and IS (ischemic strokes) risk on sex and age using meta-analysis.

In total, 22 publications were selected for this meta-analysis, studying the seasonal dynamics of HS, of which 8 publications presented statistics separately for men and women, and three papers presented statistics for different age groups. Also, 28 publications studying the seasonal dynamics of IS were selected for meta-analysis, of which 11 publications presented statistics separately for men and women, and three papers presented statistics for different age groups.

The meta-analysis of the seasonal dynamics of HS showed that HS risk is less likely in a warmer season compared with a colder one. In men, HS risk was the highest in winter and spring, and in women in winter. Dependence between HS risk and a decrease in air temperature was the same in men and women. According to the results of the meta-analysis (without regard to sex and age), the minimum probability of IS occurs in autumn. In women, IS risk was significantly higher in winter compared to other seasons. In men, the seasonal dynamics of IS was not expressed. In older people, the overall risk of stroke increased, especially IS. In people over 65 years of age, there was a significant dependence of an increase in HS risk on a decrease in air temperature. In people younger than 65 years, HS risk was not associated with cold. A decrease in temperature equally increased IS risk in both age groups.

These results suggest that sex and age may influence the seasonal stroke risk.

Keywords: 
hemorrhagic stroke, ischemic stroke, season, gender, age, risk, seasonal dynamics, meta-analysis
Kuzmenko N.V., Pliss M.G., Tsyrlin V.A., Galagudza М.М. Meta-analysis of the influence of gender and age on the sea-sonal dynamics of cerebral strokes. Health Risk Analysis, 2023, no. 1, pp. 124–136. DOI: 10.21668/health.risk/2023.1.12.eng
References: 
  1. Roth G.A., Mensah G.A., Johnson C.O., Addolorato G. [et al.]. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update From the GBD 2019 Study. J. Am. Coll. Cardiol., 2020, vol. 76, no. 25, pp. 2982–3021. DOI: 10.1016/j.jacc.2020.11.010
  2. Russo T., Felzani G., Marini C. Stroke in the very old: a systematic review of studies on incidence, outcome, and resource use. J. Aging Res., 2011, vol. 2011, pp. 108785. DOI: 10.4061/2011/108785
  3. Roquer J., Campello A.R., Gomis M. Sex differences in first-ever acute stroke. Stroke, 2003, vol. 34, no. 7, pp. 1581–1585. DOI: 10.1161/01.STR.0000078562.82918.F6
  4. Maksimova M.Yu., Airapetova A.S. Gender differences in stroke risk factors. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova, 2019, vol. 119, no. 12–2, pp. 58–64. DOI: 10.17116/jnevro201911912258 (in Russian).
  5. Kuzmenko N.V., Tsyrlin V.A., Pliss M.G., Galagudza M.M. Seasonal fluctuations of blood pressure and heart rate in healthy people: a meta-analysis of panel studies. Hum. Physiol., 2022, vol. 48, no. 3, pp. 313–327. DOI: 10.1134/S0362119722030100
  6. Kuzmenko N.V., Tsyrlin V.A., Pliss M.G., Galagudza M.M. Seasonal Body Weight Dynamics in Healthy People: A Meta-Analysis. Hum. Physiol., 2021, vol. 47, no. 6, pp. 676–689. DOI: 10.1134/S0362119721060062
  7. Kuzmenko N.V., Tsyrlin V.A., Pliss M.G., Galagudza M.M. Seasonal variations in levels of human thyroid-stimulating hormone and thyroid hormones: a meta-analysis. Chronobiol. Int., 2021, vol. 38, no. 3, pp. 301–317. DOI: 10.1080/07420528.2020.1865394
  8. Kuzmenko N.V., Tsyrlin V.A., Pliss M.G. Seasonal Dynamics of Red Blood Parameters in Healthy People in Regions with Different Types of Climate: a Meta-Analysis. Izv. Atmos. Ocean. Phys., 2021, vol. 57, no. 10, pp. 1271–1292. DOI: 10.1134/S0001433821100078 (in Russian).
  9. Kuzmenko N.V., Shchegolev B.F. Dependence of Seasonal Dynamics in Healthy People’s Circulating Lipids and Carbohydrates on Regional Climate: Meta-Analysis. Ind. J. Clin. Biochem., 2022, vol. 37, no. 4, pp. 381–398. DOI: 10.1007/s12291-022-01064-6
  10. Kuzmenko N.V., Tsyrlin V.A., Pliss M.G. Seasonal Dynamics of Melatonin, Prolactin, Sex Hormones and Adrenal Hormones in Healthy People: a Meta-Analysis. J. Evol. Biochem. Phys., 2021, vol. 57, no. 3, pp. 451–472. DOI: 10.1134/S0022093021030029
  11. Kuzmenko N.V., Pliss M.G., Tsyrlin V.A. Changes in the autonomic control of the cardiovascular system in human aging: meta-analysis. Uspekhi gerontologii, 2020, vol. 33, no. 4, pp. 748–760. DOI: 10.34922/AE.2020.33.4.018 (in Russian).
  12. Cui J., Boehmer J., Blaha C., Sinoway L.I. Muscle sympathetic nerve activity response to heat stress is attenuated in chronic heart failure patients. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2017, vol. 312, no. 6, pp. R873–R882. DOI: 10.1152/ajpregu.00355.2016
  13. Kuzmenko N.V., Pliss M.G., Galagudza M.M., Tsyrlin V.A. Effects of Hyper- and Hypothermia on Hemodynamic Parameters in People of Different Age Groups: Meta-Analysis. Adv. Gerontol., 2020, vol. 10, no. 2, pp. 170–181. DOI: 10.1134/S2079057020020095
  14. Paleczny B., Niewiński P., Rydlewska A., Piepoli M.F. [et al.]. Age-related reflex responses from peripheral and central chemoreceptors in healthy men. Clin. Auton. Res., 2014, vol. 24, no. 6, pp. 285–296. DOI: 10.1007/s10286-014-0263-9
  15. Richards J.C., Crecelius A.R., Larson D.G., Luckasen G.J., Dinenno F.A. Impaired peripheral vasodilation during graded systemic hypoxia in healthy older adults: role of the sympathoadrenal system. Am. J. Physiol. Heart Circ. Physiol., 2017, vol. 312, no. 4, pp. H832–H841. DOI: 10.1152/ajpheart.00794.2016
  16. Greaney J.L., Kenney W.L., Alexander L.M. Neurovascular mechanisms underlying augmented cold-induced reflex cutaneous vasoconstriction in human hypertension. J. Physiol., 2017, vol. 595, no. 5, pp. 1687–1698. DOI: 10.1113/JP273487
  17. Kollias A., Kyriakoulis K.G., Stambolliu E., Ntineri A. [et al.]. Seasonal blood pressure variation assessed by different measurement methods: systematic review and meta-analysis. J. Hypertens., 2020, vol. 38, no. 5, pp. 791–798. DOI: 10.1097/HJH.0000000000002355
  18. Kuzmenko N.V., Galagudza M.M. Dependence of seasonal dynamics of hemorrhagic and ischemic strokes on the climate of a region: A meta-analysis. Int. J. Stroke, 2022, vol. 17, no. 2, pp. 226–235. DOI: 10.1177/17474930211006296
  19. Biller J., Jones M.P., Bruno A., Adams H.P. Jr., Banwart K. Seasonal variation of stroke – does it exist? Neuroepide-miology, 1988, vol. 7, no. 2, pp. 89–98. DOI: 10.1159/000110140
  20. Cho S.K., Sohn J., Cho J., Noh J. [et al.]. Effect of Socioeconomic Status and Underlying Disease on the Association between Ambient Temperature and Ischemic Stroke. Yonsei Med. J., 2018, vol. 59, no. 5, pp. 686–692. DOI: 10.3349/ymj.2018.59.5.686
  21. Choi Y.I., Seo I., Kim D., Oh H.G. [et al.]. Same Pattern of Circadian Variation According to the Season in the Timing of Ischemic Stroke Onset: Preliminary Report. Sleep Med. Res., 2015, vol. 6, no. 2, pp. 72–76. DOI: 10.17241/smr.2015.6.2.72
  22. Ding J., Zhou D., Shang S., Pan L. [et al.]. Impact of seasonal variations on the first ischemic events in patients with moyamoya disease. Clin. Neurol. Neurosurg., 2018, vol. 173, pp. 65–69. DOI: 10.1016/j.clineuro.2018.07.022
  23. Evzel'man M.A., Orlova A.D., Mityaeva E.V., Kamchatnov P.R. Meteorological risk factors of ischemic stroke. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova, 2019, vol. 119, no. 8–2, pp. 35–38. DOI: 10.17116/jnevro201911908235 (in Russian).
  24. Feigin V.L., Nikitin Y.P. Seasonal variation in the occurrence of ischemic stroke and subarachnoid hemorrhage in Sibe-ria, Russia. A population-based study. Eur. J. Neurol., 1998, vol. 5, no. 1, pp. 23–27. DOI: 10.1046/j.1468-1331.1998.510023.x
  25. Fodor D.M., Fodor M., Perju-Dumbravă L. Seasonal variation of stroke occurrence: a hospital based-study. Balneo Research Journal, 2018, vol. 9, no. 2, pp. 82–87. DOI: 10.12680/balneo.2018.178
  26. Giroud M., Beuriat P., Vion P., D'Athis P.H. [et al.]. Stroke in a French prospective population study. Neuroepidemi-ology, 1989, vol. 8, no. 2, pp. 97–104. DOI: 10.1159/000110171
  27. Hakan T., Kizilkilic O., Adaletli I., Karabagli H., Kocer N., Islak C. Is there any seasonal influence in spontaneous bleeding of intracranial aneurysm and and/or AVM in Istanbul? Swiss Med. Wkly, 2003, vol. 133, no. 17–18, pp. 267–272. DOI: 10.4414/smw.2003.10162
  28. Huang Q., Lin S.-W., Hu W.-P., Li H.-Y. [et al.]. Meteorological Variation Is a Predisposing Factor for Aneurismal Subarachnoid Hemorrhage: A 5-Year Multicenter Study in Fuzhou, China. World Neurosurg., 2019, vol. 132, pp. e687–e695. DOI: 10.1016/j.wneu.2019.08.048
  29. Jakovljević D., Salomaa V., Sivenius J., Tamminen M. [et al.]. Seasonal variation in the occurrence of stroke in a Finnish adult population. The FINMONICA Stroke Register. Finnish Monitoring Trends and Determinants in Cardiovascular Disease. Stroke, 1996, vol. 27, no. 10, pp. 1774–1779. DOI: 10.1161/01.str.27.10.1774
  30. Karagiannis A., Tziomalos K., Mikhailidis D.P., Semertzidis P. [et al.]. Seasonal variation in the occurrence of stroke in Northern Greece: a 10 year study in 8204 patients. Neurol. Res., 2010, vol. 32, no. 3, pp. 326–331. DOI: 10.1179/174313208X331608
  31. Khan F.A., Engstrom G., Jerntorp I., Pessah-Rasmussen H., Janzon L. Seasonal patterns of incidence and case fatality of stroke in Malmo, Sweden: the STROMA study. Neuroepidemiology, 2005, vol. 24, no. 1–2, pp. 26–31. DOI: 10.1159/000081046
  32. Klimaszewska K., Kułak W., Jankowiak B., Kowalczuk K. [et al.]. Seasonal variation in ischaemic stroke frequency in Podlaskie Province by season. Adv. Med. Sci., 2007, vol. 52, suppl. 1, pp. 112–114.
  33. Knezovic M., Pintaric S., Jelavic M.M., Kes V.B. [et al.]. The role of weather conditions and normal level of air pollu-tion in appearance of stroke in the region of Southeast Europe. Acta Neurol. Belg., 2018, vol. 118, no. 2, pp. 267–275. DOI: 10.1007/s13760-018-0885-0
  34. Kumar P., Kumar A., Pandit A., Pathak A., Prasad K. Seasonal Variations in Stroke: A Study in a Hospital in North India. J. Stroke, 2015, vol. 17, no. 2, pp. 219–220. DOI: 10.5853/jos.2015.17.2.219
  35. Liu Y., Gong P., Wang M., Zhou J. Seasonal variation of admission severity and outcomes in ischemic stroke – a consecutive hospital-based stroke registry. Chronobiol. Int., 2018, vol. 35, no. 3, pp. 295–302. DOI: 10.1080/07420528.2017.1369430
  36. Manfredini R., Manfredini F., Boari B., Malagoni A.M. [et al.]. Temporal patterns of hospital admissions for transient ischemic attack: a retrospective population-based study in the Emilia-Romagna region of Italy. Clin. Appl. Thromb. Hemost., 2010, vol. 16, no. 2, pp. 153–160. DOI: 10.1177/1076029609332111
  37. Mao Y., Schnytzer Y., Busija L., Churilov L., Davis S., Yan B. ‘MOONSTROKE’: Lunar patterns of stroke occurrence combined with circadian and seasonal rhythmicity – A hospital based study. Chronobiol. Int., 2015, vol. 32, no. 7, pp. 881–888. DOI: 10.3109/07420528.2015.1049614
  38. Ogata T., Kimura K., Minematsu K., Kazui S., Yamaguchi T., Japan Multicenter Stroke Investigators’ Collaboration. Variation in ischemic stroke frequency in Japan by season and by other variables. J. Neurol. Sci., 2004, vol. 225, no. 1–2, pp. 85–89. DOI: 10.1016/j.jns.2004.07.002
  39. Ostbye T., Levy A.R., Mayo N.E. Hospitalization and case-fatality rates for subarachnoid hemorrhage in Canada from 1982 through 1991. The Canadian Collaborative Study Group of Stroke Hospitalizations. Stroke, 1997, vol. 28, no. 4, pp. 793–798. DOI: 10.1161/01.str.28.4.793
  40. Palm F., Dos Santos M., Urbanek C., Greulich M. [et al.]. Stroke seasonality associations with subtype, etiology and laboratory results in the Ludwigshafen Stroke Study (LuSSt). Eur. J. Epidemiol., 2013, vol. 28, no. 5, pp. 373–381. DOI: 10.1007/s10654-013-9772-4
  41. Park H.-S., Kang M.-J., Huh J.-T. Recent epidemiological trends of stroke. J. Korean Neurosurg. Soc., 2008, vol. 43, no. 1, pp. 16–20. DOI: 10.3340/jkns.2008.43.1.16
  42. Passero S., Reale F., Ciacci G., Zei E. Differing temporal patterns of onset in subgroups of patients with intracerebral hemorrhage. Stroke, 2000, vol. 31, no. 7, pp. 1538–1544. DOI: 10.1161/01.str.31.7.1538
  43. Ricci S., Celani M.G., Vitali R., La Rosa F., Righetti E., Duca E. Diurnal and seasonal variations in the occurrence of stroke: A community-based study. Neuroepidemiology, 1992, vol. 11, no. 2, pp. 59–64. DOI: 10.1159/000110913
  44. Salam A., Kamran S., Bibi R., Korashy H.M. [et al.]. Meteorological Factors and Seasonal Stroke Rates: A Four-year Comprehensive Study. J. Stroke Cerebrovasc. Dis., 2019, vol. 28, no. 8, pp. 2324–2331. DOI: 10.1016/j.jstrokecerebrovasdis.2019.05.032
  45. Lazarevic S., Aleksic D., Boskovic Matic T., Vesic K. [et al.]. Temporal variations of stroke occurrence. Serb. J. Exp. Clin. Res., 2017, vol. 18, no. 1, pp. 33–38. DOI: 10.1515/sjecr-2016-0025
  46. Soomro M.A., Solangi G.A., Shaikh B.A., Gurbakhshni K., Mahesar A.H. Stroke types in relation to seasonal variation and months of a year. Medical Channel, 2011, vol. 17, no. 2, pp. 57–62.
  47. Spengos K., Vemmos K.N., Tsivgoulis G., Synetos A. [et al.]. Seasonal variation of hospital admissions caused by acute stroke in Athens, Greece. J. Stroke Cerebrovasc. Dis., 2003, vol. 12, no. 2, pp. 93–96. DOI: 10.1053/jscd.2003.15
  48. Telman G., Sviri G.E., Sprecher E., Amsalem Y., Avizov R. Seasonal variation in spontaneous intracerebral hemorrhage in northern Israel. Chronobiol. Int., 2017, vol. 34, no. 5, pp. 563–570. DOI: 10.1080/07420528.2016.1278223
  49. Toyoda K., Koga M., Yamagami H., Yokota C. [et al.]. Seasonal Variations in Neurological Severity and Outcomes of Ischemic Stroke – 5-Year Single-Center Observational Study. Circ. J., 2018, vol. 82, no. 5, pp. 1443–1450. DOI: 10.1253/circj.CJ-17-1310
  50. Van Donkelaar C.E., Potgieser A.R.E., Groen H. [et al.]. Atmospheric Pressure Variation is a Delayed Trigger for An-eurysmal Subarachnoid Hemorrhage. World Neurosurg., 2018, vol. 112, pp. e783–e790. DOI: 10.1016/j.wneu.2018.01.155
  51. Vodonos A., Novack V., Horev A., Abu Salameh I., Lotan Y., Ifergane G. Do Gender and Season Modify the Triggering Effect of Ambient Temperature on Ischemic Stroke? Womens Health Issues, 2017, vol. 27, no. 2, pp. 245–251. DOI: 10.1016/j.whi.2016.11.002
  52. Zhong H., Shu Z., Zhou Y., Lu Y. [et al.]. Seasonal Effect on Association between Atmospheric Pollutants and Hospital Emergency Room Visit for Stroke. J. Stroke Cerebrovasc. Dis., 2018, vol. 27, no. 1, pp. 169–176. DOI: 10.1016/j.jstrokecerebrovasdis.2017.08.014
  53. Valentine J.C., Pigott T.D., Rothstein H.R. How Many Studies Do You Need? A Primer on Statistical Power for Meta-Analysis. Journal of Educational and Behavioral Statistics, 2010, vol. 35, no. 2, pp. 215–247. DOI: 10.3102/1076998609346961
  54. Poorthuis M.H., Algra A.M., Algra A., Kappelle L.J., Klijn C.J. Female- and Male-Specific Risk Factors for Stroke: A Systematic Review and Meta-analysis. JAMA Neurol., 2017, vol. 74, no. 1, pp. 75–81. DOI: 10.1001/jamaneurol.2016.3482
  55. Khaw K.T., Barrett-Connor E. Blood pressure and endogenous testosterone in men: an inverse relationship. J. Hyper-tens., 1988, vol. 6, no. 4, pp. 329–332.
  56. Radysh I.V., Koroteeva T.V., Krayushkin S.S., Khodorovich A.M., Zhuravleva Yu.S. Adaptivnye gormonal'nye iz-meneniya u zdorovykh zhenshchin v razlichnye sezony goda [Adaptive hormonal changes in healthy women in different seasons of the year]. Vestnik Volgogradskogo gosudarstvennogo meditsinskogo universiteta, 2011, no. 1 (37), pp. 91–94 (in Russian).
  57. Yie S.M., Brown G.M., Liu G.Y., Collins J.A. [et al.]. Melatonin and steroids in human pre-ovulatory follicular fluid: seasonal variations and granulosa cell steroid production. Hum. Reprod., 1995, vol. 10, no. 1, pp. 50–55. DOI: 10.1093/humrep/10.1.50
  58. Das Chagas Angelo Mendes Tenorio F., de Jesus Simões M., Wanderley Teixeira V., Coelho Teixeira Á.A. Effects of melatonin and prolactin in reproduction: review of literature. Rev. Assoc. Med. Bras. (1992), 2015, vol. 61, no. 3, pp. 269–274. DOI: 10.1590/1806-9282.61.03.269
  59. Peters S.A., Huxley R.R., Woodward M. Diabetes as a risk factor for stroke in women compared with men: a systematic review and meta-analysis of 64 cohorts, including 775,385 individuals and 12,539 strokes. Lancet, 2014, vol. 383, no. 9933, pp. 1973–1980. DOI: 10.1016/S0140-6736(14)60040-4
  60. Rodríguez-Campello A., Jiménez-Conde J., Ois Á., Cuadrado-Godia E. [et al]. Sex-related differences in abdominal obesity impact on ischemic stroke risk. Eur. J. Neurol., 2017, vol. 24, no. 2, pp. 397–403. DOI: 10.1111/ene.13216
  61. Roush G.C., Fagard R.H., Salles G.F., Pierdomenico S.D. [et al]. Prognostic impact of sex-ambulatory blood pressure interactions in 10 cohorts of 17 312 patients diagnosed with hypertension: systematic review and meta-analysis. J. Hypertens., 2015, vol. 33, no. 2, pp. 212–220. DOI: 10.1097/HJH.0000000000000435
  62. Hutchins K.P., Minett G.M., Stewart I.B. Treating exertional heat stroke: Limited understanding of the female response to cold water immersion. Front. Physiol., 2022, vol. 13, pp. 1055810. DOI: 10.3389/fphys.2022.1055810
  63. Kenney W.L. A review of comparative responses of men and women to heat stress. Environ. Res., 1985, vol. 37, no. 1, pp. 1–11. DOI: 10.1016/0013-9351(85)90044-1
  64. Gargaglioni L.H., Marques D.A., Patrone L.G.A. Sex differences in breathing. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 2019, vol. 238, pp. 110543. DOI: 10.1016/j.cbpa.2019.110543
  65. Cheng J., Xu Z., Bambrick H., Prescott V. [et al.]. Cardiorespiratory effects of heatwaves: A systematic review and meta-analysis of global epidemiological evidence. Environ. Res., 2019, vol. 177, pp. 108610. DOI: 10.1016/j.envres.2019.108610
  66. Wang X., Cao Y., Hong D., Zheng D. [et al.]. Ambient Temperature and Stroke Occurrence: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health., 2016, vol. 13, no. 7, pp. 698. DOI: 10.3390/ijerph13070698
  67. Nave A.H., Lange K.S., Leonards C.O., Siegerink B. [et al.]. Lipoprotein (a) as a risk factor for ischemic stroke: a meta-analysis. Atherosclerosis, 2015, vol. 242, no. 2, pp. 496–503. DOI: 10.1016/j.atherosclerosis.2015.08.021
  68. Aparicio H.J., Tarko L.M., Gagnon D., Costa L. [et al.]. Low Blood Pressure, Comorbidities, and Ischemic Stroke Mortality in US Veterans. Stroke, 2022, vol. 53, no. 3, pp. 886–894. DOI: 10.1161/STROKEAHA.120.033195
  69. Narita K., Kario K. Management of seasonal variation in blood pressure through the optimal adjustment of antihyperten-sive medications and indoor temperature. Hypertens. Res., 2022, vol. 46, no. 3, pp. 806–808. DOI: 10.1038/s41440-022-01151-4
  70. Arakawa K., Ibaraki A., Kawamoto Y., Tominaga M., Tsuchihashi T. Antihypertensive drug reduction for treated hypertensive patients during the summer. Clin. Exp. Hypertens., 2019, vol. 41, no. 4, pp. 389–393. DOI: 10.1080/10641963.2018.1489549
Received: 
01.12.2022
Approved: 
18.03.2023
Accepted for publication: 
25.03.2023

You are here