Strains and virulence genes of salmonella with multidrug resistance isolated from chicken carcasses (Hanoi, Vietnam)
Xuan Da Pham1, Hao Le Thi Hong2, Huyen Tran Thi Thanh3, Long Thanh Le2, Hoa Vinh Le2, Ninh Hanh Thi2, Minh Le Tran4, Nguyen Thanh Trung2
1Vietnam National University, Ho Chi Minh City, Vietnam
2National Institute for Food Control, 65 Fam Tan Duat Str., Hanoi, Vietnam
3Vinmec Research Institute of Stem cell and Gene Technology, Hai Ba Trung, Hanoi, Vietnam
4High School for Gifted Students, Hanoi University of Science, 182 Luong The Vinh Str., Hanoi, Vietnam
Salmonella enterica is one of dangerous food-borne pathogens listed by the World Health Organization (WHO). In Vietnam, poultry is one of the most widely eaten meats and is reported as a common source of S. enterica contamination.
The aim of this study was to examine multi-resistant Salmonella strains, to identify susceptibility to antibiotics by using 15 different types of medications and to perform sequencing to analyze antibiotic resistance genes, genotypes, multi-locus sequence-based typing (MLST), and plasmids.
The result of the antibiotic susceptibility test indicated that phenotypic resistance to 9–11 types of antimicrobials was confirmed in all strains. Among 06 sequenced strains, we identified 43 genes associated with antibiotic resistance: strains carrying a range of genes that are associated with aminoglycoside resistance (aac(3), aac(6), ant(3), aph(3), aph(6), aadA); all strains carried blaCTX-M-55 or blaCTX-M-65 gene, which were resistant to the 3rd generation antibiotics; there were also frequently observed sul1, sul2, sul3, tet (A), qnrS1, floR, dfrA14 or dfrA27 genes in sequenced isolates. Besides, the genome sequencing also indicated that all strains carried pathogenicity islands SPI 1, SPI 2, and SPI 3 thereby creating many potential triggers of the disease. Additionally, some carried C63PI, SPI 9, SPI 13, SPI 14, and plus some plasmids such as Col156, IncHI2, IncHI2A, IncFIB, Col (MGD2).
- Lamas A., Miranda J.M., Regal P., Vázquez B. [et al.]. A comprehensive review of non-enterica subspecies of Salmo-nella enterica. Microbiol. Res., 2018, vol. 206, pp. 60–73. DOI: 10.1016/J.MICRES.2017.09.010
- Risk assessments of Salmonella in eggs and broiler chickens. FAO, WHO, 2002, 302 p. Available at: https://apps.who.int/iris/handle/10665/342257 (October 18, 2022).
- Hoffmann M., Luo Y., Monday S.R., Gonzalez-Escalona N. [et al.]. Tracing Origins of the Salmonella Bareilly Strain Causing a Food-borne Outbreak in the United States. J. Infect. Dis., 2016, vol. 213, pp. 502–508. DOI: 10.1093/INFDIS/JIV297
- Truong H.A.V., Nguyen H.K.T., Chu V.H., Huynh Y.H. Antimicrobial susceptibility of Salmonella spp. isolated from raw meats at traditional markets in Ho Chi Minh city. Ministry of Science and Technology, 2021, vol. 63, pp. 55–59. DOI: 10.31276/VJST.63(8).55-59
- Nguyen T.K., Nguyen L.T., Chau T.T.H., Nguyen T.T. [et al.]. Prevalence and antibiotic resistance of Salmonella isolated from poultry and its environment in the Mekong Delta, Vietnam. Vet. World, 2021, vol. 14, pp. 3216–3223. DOI: 10.14202/VETWORLD.2021.3216-3223
- Scaltriti E., Sassera D., Comandatore F., Morganti C.M. [et al.]. Differential Single Nucleotide Polymorphism-Based Analysis of an Outbreak Caused by Salmonella enterica Serovar Manhattan Reveals Epidemiological Details Missed by Standard Pulsed-Field Gel Electrophoresis. J. Clin. Microbiol., 2015, vol. 53, pp. 1227. DOI: 10.1128/JCM.02930-14
- Achtman M., Wain J., Weill F.X., Nair S. [et al.]. Multilocus sequence typing as a replacement for serotyping in Sal-monella enterica. PLoS Pathog., 2012, vol. 8. DOI: 10.1371/JOURNAL.PPAT.1002776
- Gilchrist C.A., Turner S.D., Riley M.F., Petri W.A., Hewlett E.L. Whole-Genome Sequencing in Outbreak Analysis. Clin. Microbiol. Rev., 2015, vol. 28, pp. 541–563. DOI: 10.1128/CMR.00075-13
- Leekitcharoenphon P., Nielsen E.M., Kaas R.S., Lund O., Aarestrup F.M. Evaluation of whole genome sequencing for outbreak detection of salmonella enterica. PLoS One, 2014, vol. 9. DOI: 10.1371/journal.pone.0087991
- Yoshid C.E., Kruczkiewicz P., Laing C.R., Lingohr E.J. [et al.]. The salmonella in silico typing resource (SISTR): An open web-accessible tool for rapidly typing and subtyping draft salmonella genome assemblies. PLoS One, 2016, vol. 11. DOI: 10.1371/journal.pone.0147101
- Seemann T. ABRicate: mass screening of contigs for antiobiotic resistance genes. Available at: https://github.com/tseemann/abricate (October 16, 2022).
- Zankari E., Hasman H., Cosentino S., Vestergaard M. [et al.]. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother., 2012, vol. 67, pp. 2640–2644. DOI: 10.1093/JAC/DKS261
- McArthur A.G., Waglechner N., Nizam F., Yan A. [et al.]. The Comprehensive Antibiotic Resistance Database. Antimicrob. Agents Chemother., 2013, vol. 57, pp. 3348. DOI: 10.1128/AAC.00419-13
- Gupta S.K., Padmanabhan B.R., Diene S.M., Lopez-Rojas R. [et al.]. ARG-ANNOT, a new bioinformatic tool to dis-cover antibiotic resistance genes in bacterial genomes. Antimicrob. Agents Chemother., 2014, vol. 58, pp. 212–220. DOI: 10.1128/AAC.01310-13
- Carattoli A., Zankari E., Garciá-Fernández A., Larsen M.V. [et al.]. In Silico detection and typing of plasmids using plasmidfinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother., 2014, vol. 58, pp. 3895–3903. DOI: 10.1128/AAC.02412-14
- Castro-Vargas R.E., Herrera-Sánchez M.P., Rodríguez-Hernández R., Rondón-Barragán I.S. Antibiotic resistance in Salmonella spp. isolated from poultry: A global overview. Vet. World, 2020, vol. 13, pp. 2070–2084. DOI: 10.14202/VETWORLD.2020.2070-2084
- Donado-Godoy P., Bernal J.F., Rodríguez F., Gomez Y. [et al.]. Genome sequences of multidrug-resistant Salmonella enterica serovar Paratyphi B (dT+) and Heidelberg strains from the Colombian poultry chain. Genome Announc., 2015, vol. 3. DOI: 10.1128/genomeA.01265-15
- Nakayama T., le Thi H., Thanh P.N., Minh D.T.N. [et al.]. Abundance of colistin-resistant Escherichia coli harbouring mcr-1 and extended-spectrum β-lactamase-producing E. coli co-harbouring blaCTX-M-55 or -65 with blaTEM isolates from chicken meat in Vietnam. Archives of Microbiology, 2022, vol. 204, pp. 137. DOI: 10.1007/S00203-021-02746-0