The risk of developing severe clinical forms of covid-19 in healthcare workers in the initial period of the pandemic: Non-occupational factors and laboratory prognostic indicators
T.A. Platonova1,2, A.A. Golubkova3,4, M.S. Sklyar1,5, E.A. Karbovnichaya1, S.S. Smirnova2,6, K.V. Varchenko7, A.A. Ivanova7, A.B. Komissarov7, D.A. Lioznov7,8
1European Medical Center ‘UMMC-Health’, 113 Sheinkmana Str., Ekaterinburg, 620144, Russian Federation
2Ural State Medical University, 3 Repina Str., Ekaterinburg, 620028, Russian Federation
3Central Research Institute of Epidemiology, 3А Novogireevskaya Str., Moscow, 111123, Russian Federation
4Russian Medical Academy for Continuous Professional Education, 2/1 Barrikadnaya Str., bldg 1, Moscow, 125993, Russian Federation
5Ural Mining and Metallurgical Company, 1 Uspenskii Ave., Verkhnyaya Pyshma, 624091, Russian Federation
6Ekaterinburg Research Institute of Viral Infections of the “Vector” State Research Center of Virology and Biotechnology, 23 Letnyaya Str., Ekaterinburg, 620030, Russian Federation
7Smorodintsev Research Institute of Influenza, 15/17 Prof. Popova Str., Saint Petersburg, 197376, Russian Federation
8Pavlov First Saint Petersburg State Medical University, 6-8 L’va Tolstogo Str., Saint Petersburg, 197022, Russian Federation
Under the COVID-19 pandemic, healthcare workers were at the highest risk of getting infected with the disease; this necessitates specialized studies in this occupational group.
The aim of the study was to identify non-occupational risk factors and laboratory markers indicating that severe clinical forms of new coronavirus infection would probably develop in healthcare workers in the initial period of the pandemic.
The study included 366 workers who suffered COVID-19 in 2020–2021. The disease was confirmed by examining smears from the pharynx and nose with PCR. Some of the samples were examined using the SARS-CoV-2 whole genome sequencing technology. To determine laboratory prognostic indicators evidencing the development of more severe forms of the disease (pneumonia), a number of healthcare workers underwent laboratory examination during the acute period of the disease, namely: general clinical and biochemical blood tests, immunophenotyping of lymphocytes, analysis of the hemostasis system and cytokine levels. To study non-occupational risk factors of pneumonia, all healthcare workers after recovery were asked to fill in a Google form developed by the authors.
The most severe clinical forms of COVID-19 were registered in healthcare workers who were older than 40 years, with low physical activity and a body mass index higher than 25.0, had diabetes mellitus and chronic diseases of the genitourinary system.
When analyzing the results of laboratory tests, markers indicating development of pneumonia were identified and their critical values (cut-off points) were determined: the level of lymphocytes (below 1.955•109/l), T-cytotoxic lymphocytes (below 0.455•109/l), T-helpers (below 0.855•109/L), natural killers (below 0.205•109/l), platelets (below 239•109/L), erythrocyte sedimentation rate (above 11.5 mm/h), D-dimer (above 0.325 mcg/ml), total protein (below 71.55 g/L), lactate dehydrogenase (above 196 U/L), C-reactive protein (above 4.17 mg/l), and interleukin-6 (above 3.63 pg/l).
The study identified non-occupational risk factors causing development of severe COVID-19 and established laboratory prognostic indicators.
- Briko N.I., Kagramanyan I.N., Nikiforov V.V., Suranova T.G., Chernyavskaya O.Р., Polezhaeva N.A. Pandemic COVID-19. Prevention Measures in the Russian Federation. Epidemiologiya i vaktsinoprofilaktika, 2020, vol. 19, no. 2, pp. 4–12. DOI: 10.31631/2073-3046-2020-19-2-4-12 (in Russian).
- Shchelkanov M.Yu., Kolobukhina L.V., Burgasova O.A., Kruzhkova I.S., Maleev V.V. COVID-19: etiology, clinical picture, treatment. Infektsiya i immunitet, 2020, vol. 10, no. 3, рр. 421–445. DOI: 10.15789/2220-7619-CEC-1473 (in Russian).
- Liang W.-H., Guan W.-J., Li C.-C., Li Y.-M., Liang H.-R., Zhao Y., Liu X.-Q., Sang L. [et al.]. Clinical characteristics and outcomes of hospitalised patients with COVID-19 treated in Hubei (epicentre) and outside Hubei (non-epicentre): a nationwide analysis of China. Eur. Respir. J., 2020, vol. 55, no. 6, pp. 2000562. DOI: 10.1183/13993003.00562-2020
- Zhang T., Huang W.-S., Guan W., Hong Z., Gao J., Gao G., Wu G., Qin Y.-Y. Risk factors and predictors associated with the severity of COVID-19 in China: a systematic review, meta-analysis, and meta-regression. J. Thorac. Dis., 2020, vol. 12, no. 12, pp. 7429–7441. DOI: 10.21037/jtd-20-1743
- She J., Liu L., Liu W. COVID-19 epidemic: Disease characteristics in children. J. Med. Virol., 2020, vol. 92, no. 7, pp. 747–754. DOI: 10.1002/jmv.25807
- Zhidkova E.A., Gutor E.M., Tkachenko Yu.A., Rogova I.V., Popova I.A., Gurevich K.G. Retrospective analysis of risk factors for COVID-19 in the working population. Infektsionnye bolezni: novosti, mneniya, obuchenie, 2021, vol. 10, no. 2 (37), рр. 25–30. DOI: 10.33029/2305-3496-2021-10-2-25-30 (in Russian).
- Xiang G., Xie L., Chen Z., Hao S., Fu C., Wu Q., Liu X., Li S. Clinical risk factors for mortality of hospitalized patients with COVID-19: systematic review and meta-analysis. Ann. Palliat. Med., 2021, vol. 10, no. 3, рр. 2723–2735. DOI: 10.21037/apm-20-1278
- Galkina S.N., Rybalko A.S., Karpun N.A., Zolotova E.A., Perekhodov S.N., Chaus N.I. Methylprednisolone continuous infusion versus tocilizumab in treatment of hospitalized COVID‑19 patients: Retrospective data analysis and comparison of effects. Meditsinskii alfavit, 2022, no. 23, pp. 15–19. DOI: 10.33667/2078-5631-2022-23-15-19 (in Russian).
- Calo F., Russo A., Camaioni C., De Pascalis S., Coppola N. Burden, risk assessment, surveillance and management of SARS-CoV-2 infection in health workers: a scoping review. Infect. Dis. Poverty, 2020, vol. 9, no. 1, рр. 139. DOI: 10.1186/s40249-020-00756-6
- Chou R., Dana T., Buckley D.I., Selph S., Fu R., Totten A.M. Epidemiology of and Risk Factors for Coronavirus Infection in Health Care Workers: A Living Rapid Review. Ann. Intern. Med., 2020, vol. 173, no. 2, рр. 120–136. DOI: 10.7326/M20-1632
- Nguyen L.H., Drew D.A., Graham M.S., Joshi A.D., Guo C.-G., Ma W., Mehta R.S., Warner E.T. [et al.]. Coronavirus Pandemic Epidemiology Consortium. Risk of COVID-19 among front-line health-care workers and the general community: a prospective cohort study. Lancet Public Health, 2020, vol. 9, no. 5, рр. e475–e483. DOI: 10.1016/S2468-2667(20)30164-X
- Platonova T.A., Golubkova A.A., Tutelyan A.V., Smirnova S.S. The incidence of COVID-19 medical workers. The issues of biosafety and occupational risk factors. Epidemiologiya i Vaktsinoprofilaktika, 2021, vol. 20, no. 2, рр. 4–11. DOI: 10.31631/2073-3046-2021-20-2-4-11 (in Russian).
- Sisin Y.I., Golubkova A.A., Kozlova I.I., Ostapenko N.A. Epidemiological risks and lessons from the first wave of new coronavirus infection (COVID-19) in medical organizations. Epidemiologiya i infektsionnye bolezni, 2020, vol. 25, no. 4, рр. 156–166. DOI: 10.17816/EID54401 (in Russian).
- Molani S., Hernandez P.V., Roper R.T., Duvvuri V.R., Baumgartner A.M., Goldman J.D., Ertekin-Taner N., Funk C.C. [et al.]. Risk factors for severe COVID-19 differ by age for hospitalized adults. Sci. Rep., 2022, vol. 12, no. 1, рр. 6568. DOI: 10.1038/s41598-022-10344-3
- Kim L., Garg S., O'Halloran A., Whitaker M., Pham H., Anderson E.J., Armistead I., Bennett N.M. [et al.]. Risk Factors for Intensive Care Unit Admission and In-hospital Mortality Among Hospitalized Adults Identified through the US Corona-virus Disease 2019 (COVID-19)-Associated Hospitalization Surveillance Network (COVID-NET). Clin. Infect. Dis., 2021, vol. 72, no. 9, рр. e206–e214. DOI: 10.1093/cid/ciaa1012
- Ko J.Y., Danielson M.L., Town M., Derado G., Greenlund K.J., Kirley P.D., Alden N.B., Yousey-Hindes K. [et al.]. Risk Factors for Coronavirus Disease 2019 (COVID-19)-Associated Hospitalization: COVID-19-Associated Hospitalization Surveillance Network and Behavioral Risk Factor Surveillance System. Clin. Infect. Dis., 2021, vol. 72, no. 11, рр. e695–e703. DOI: 10.1093/cid/ciaa1419
- Zhou F., Yu T., Du R., Fan G., Liu Y., Liu Z., Xiang J., Wang Y. [et al.]. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet, 2020, vol. 395, no. 10229, рр. 1054–1062. DOI: 10.1016/S0140-6736(20)30566-3
- Gao Y.D., Ding M., Dong X., Zhang J.-J., Azkur A.K., Azkur D., Gan H., Sun Y.-L. [et al.]. Risk factors for severe and critically ill COVID-19 patients: A review. Allergy, 2021, vol. 76, no. 2, рр. 428–455. DOI: 10.1111/all.14657
- Kim Y., Latz C.A., DeCarlo C.S., Lee S., Png C.Y.M., Kibrik P., Sung E., Alabi O., Dua A. Relationship between blood type and outcomes following COVID-19 infection. Semin. Vasc. Surg., 2021, vol. 34, no. 3, рр. 125–131. DOI: 10.1053/j.semvascsurg.2021.05.005
- Conlon A., Ashur C., Washer L., Eagle K.A., Hofmann Bowman M.A. Impact of the influenza vaccine on COVID-19 infection rates and severity. Am. J. Infect. Control, 2021, vol. 49, no. 6, рр. 694–700. DOI: 10.1016/j.ajic.2021.02.012
- Candelli M., Pignataro G., Torelli E., Gullì A., Celestino Nista E., Petrucci M., Saviano A., Marchesini D. [et al.]. Effect of influenza vaccine on COVID-19 mortality: a retrospective study. Intern. Emerg. Med., 2021, vol. 16, no. 7, рр. 1849–1855. DOI: 10.1007/s11739-021-02702-2
- Massoudi N., Mohit B. A Case-Control Study of the 2019 Influenza Vaccine and Incidence of COVID-19 Among Healthcare Workers. J. Clin. Immunol., 2021, vol. 41, no. 2, рр. 324–334. DOI: 10.1007/s10875-020-00925-0
- Belingheri M., Paladino M.E., Latocca R., De Vito G., Riva M.A. Association between seasonal flu vaccination and COVID-19 among healthcare workers. Occup. Med. (Lond.), 2020, vol. 70, no. 9, рр. 665–671. DOI: 10.1093/occmed/kqaa197
- Im H., Ser J., Sim U., Cho H. Promising Expectations for Pneumococcal Vaccination during COVID-19. Vaccines (Basel), 2021, vol. 9, no. 12, рр. 1507. DOI: 10.3390/vaccines9121507
- Kapoula G.V., Vennou K.E., Bagos P.G. Influenza and Pneumococcal Vaccination and the Risk of COVID-19: A Systematic Review and Meta-Analysis. Diagnostics (Basel), 2022, vol. 12, no. 12, рр. 3086. DOI: 10.3390/diagnostics12123086
- Palladino M. Complete blood count alterations in COVID-19 patients: A narrative review. Biochem. Med. (Zagreb), 2021, vol. 31, no. 3, рр. 030501. DOI: 10.11613/BM.2021.030501
- Henry B.M., de Oliveira M.H.S., Benoit S., Plebani M., Lippi G. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): a meta-analysis. Clin. Chem. Lab. Med., 2020, vol. 58, no. 7, рр. 1021–1028. DOI: 10.1515/cclm-2020-0369
- Paliogiannis P., Mangoni A.A., Dettori P., Nasrallah G.K., Pintus G., Zinellu A. D-Dimer Concentrations and COVID-19 Severity: A Systematic Review and Meta-Analysis. Front. Public Health, 2020, vol. 8, рр. 432. DOI: 10.3389/fpubh.2020.00432
- Düz M.E., Balcı A., Menekşe E. D-dimer levels and COVID-19 severity: Systematic Review and Meta-Analysis. Tuberk. Toraks, 2020, vol. 68, no. 4, рр. 353–360. DOI: 10.5578/tt.70351
- Shah S., Shah K., Patel S.B., Patel F.S., Osman M., Velagapudi P., Turagam M.K., Lakkireddy D., Garg J. Elevated D-Dimer Levels Are Associated With Increased Risk of Mortality in Coronavirus Disease 2019: A Systematic Review and Meta-Analysis. Cardiol. Rev., 2020, vol. 28, no. 6, рр. 295–302. DOI: 10.1097/CRD.0000000000000330
- Ozen M., Yilmaz A., Cakmak V., Beyoglu R., Oskay A., Seyit M., Senol H. D-Dimer as a potential biomarker for disease severity in COVID-19. Am. J. Emerg. Med., 2021, vol. 40, рр. 55–59. DOI: 10.1016/j.ajem.2020.12.023
- Poudel A., Poudel Y., Adhikari A., Aryal B.B., Dangol D., Bajracharya T., Maharjan A., Gautam R. D-dimer as a biomarker for assessment of COVID-19 prognosis: D-dimer levels on admission and its role in predicting disease outcome in hos-pitalized patients with COVID-19. PLoS One, 2021, vol. 16, no. 8, рр. e0256744. DOI: 10.1371/journal.pone.0256744
- Zhao Z., Xie J., Yin M., Yang Y., Ding C., Gao Y., Ma X. Interleukin-6 and severity of COVID-19 patients in Hefei, China. Med. Mal. Infect., 2020, vol. 50, no. 7, рр. 629–631. DOI: 10.1016/j.medmal.2020.06.005
- Ulhaq Z.S., Soraya G.V. Interleukin-6 as a potential biomarker of COVID-19 progression. Med. Mal. Infect., 2020, vol. 50, no. 4, рр. 382–383. DOI: 10.1016/j.medmal.2020.04.002
- Brizuela M.E., Goñi S.E., Cardama G.A., Zinni M.A., Castello A.A., Sommese L.M., Farina H.G. Correlation of SARS-CoV-2 Viral Load and Clinical Evolution of Pediatric Patients in a General Hospital From Buenos Aires, Argentina. Front. Pediatr., 2022, vol. 10, рр. 883395. DOI: 10.3389/fped.2022.883395
- Mishra B., Ranjan J., Purushotham P., Kar P., Payal P., Saha S., Deshmukh V., Das S. Comparison of Cycle Threshold and Clinical Status Among Different Age Groups of COVID-19 Cases. Cureus, 2022, vol. 14, no. 4, рр. e24194. DOI: 10.7759/cureus.24194
- Maltezou H.C., Raftopoulos V., Vorou R., Papadima K., Mellou K., Spanakis N., Kossyvakis A., Gioula G. [et al.]. Association Between Upper Respiratory Tract Viral Load, Comorbidities, Disease Severity, and Outcome of Patients With SARS-CoV-2 Infection. J. Infect. Dis., 2021, vol. 223, no. 7, рр. 1132–1138. DOI: 10.1093/infdis/jiaa804
- Karahasan Yagci A., Sarinoglu R.C., Bilgin H., Yanılmaz Ö., Sayın E., Deniz G., Guncu M.M., Doyuk Z. [et al.]. Relationship of the cycle threshold values of SARS-CoV-2 polymerase chain reaction and total severity score of computerized tomography in patients with COVID 19. Int. J. Infect. Dis., 2020, vol. 101, рр. 160–166. DOI: 10.1016/j.ijid.2020.09.1449
- Camargo J.F., Lin R.Y., Komanduri K.V. Lack of correlation between the SARS-CoV-2 cycle threshold (Ct) value and clinical outcomes in patients with COVID-19. J. Med. Virol., 2021, vol. 93, no. 10, рр. 6059–6062. DOI: 10.1002/jmv.27171
- Saglik I., Ener B., Akalin H., Ozdemir B., Ocakoglu G., Yalcin B., Onal U., Guçlu O.A., Ozturk N.A.A. [et al.]. Association of SARS-CoV-2 cycle threshold (Ct) values with clinical course and serum biomarkers in COVID-19 patients. J. Infect. Dev. Ctries, 2022, vol. 16, no. 3, рр. 445–452. DOI: 10.3855/jidc.15818
- Salvatore P.P., Dawson P., Wadhwa A., Rabold E.M., Buono S., Dietrich E.A., Reses H.E., Vuong J. [et al.]. Epidemiological Correlates of Polymerase Chain Reaction Cycle Threshold Values in the Detection of Severe Acute Respiratory Syn-drome Coronavirus 2 (SARS-CoV-2). Clin. Infect. Dis., 2021, vol. 72, no. 11, рр. e761–e767. DOI: 10.1093/cid/ciaa1469
- Akimkin V.G., Popova A.Yu., Khafizov K.F., Dubodelov D.V., Ugleva S.V., Semenenko T.A., Ploskireva A.A., Gorelov A.V. [et al.]. COVID-19: evolution of the pandemic in Russia. Report II: dynamics of the circulation of SARS-CoV-2 genetic variants. Zhurnal mikrobiologii, epidemiologii i immunobiologii, 2022, vol. 99, no. 4, рр. 381–396. DOI: 10.36233/0372-9311-295 (in Russian).
- Wang Y., Zhang L., Sang L. Ye F., Ruan S., Zhong B., Song T., Alshukairi A.N. [et al.]. Kinetics of viral load and antibody response in relation to COVID-19 severity. J. Clin. Invest., 2020, vol. 130, no. 10, рр. 5235–5244. DOI: 10.1172/JCI138759
- Zhang X., Lu S., Li H., Wang Y., Lu Z., Liu Z., Lai Q., Ji Y. [et al.]. Viral and Antibody Kinetics of COVID-19 Patients with Different Disease Severities in Acute and Convalescent Phases: A 6-Month Follow-Up Study. Virol. Sin., 2020, vol. 35, no. 6, рр. 820–829. DOI: 10.1007/s12250-020-00329-9