Molecular and genetic aspects of health risks and their association with adverse environmental conditions and diets (systemic review)

View or download the full article: 

T.V. Mazhaeva, S.E. Dubenko, J.S. Chernova, I.A. Nosova


Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popova Str., Ekaterinburg, 620014, Russian Federation


At present, it is vital to examine adverse effects produced on gene expression by negative environmental factors and nutrients. In this study, our aim was to generalize data available in literature on an association between health risks and polymorphisms of genes that participated in xenobiotic detoxification and allergic status, food intolerance included, in adults and children. We also considered influence exerted by various components in diets on gene expression.
Available research data indicate that GSTP1 and SOD gene polymorphisms have their effects on a decline in detoxification and antioxidant functions and early development of allergic, occupational and oncological diseases under exposure to harmful chemicals. Micronutrients in diets that can protect from adverse effects produced by chemicals can act not only as substrates but also as detoxification enzyme inducers. Great quantities of biologically active compounds in the Mediterranean diet are assumed to be able to modulate functional activity of certain genes. Such nutrients as polyphenols, flavonoids, catechins, glucosinolates, anthocyanins, stilbenes, carotinoids, polyamines, spermidine and spermine produce anti-genotoxic and anti-carcinogenic effects.
Use of combined nutrigenetic and phenotypic data seems a promising trend in effective modeling of a healthy diet.
The research data outlined in this review indicate there is solid evidence that health risks can depend on a genotype, phenotype and quality of the environment. These risks also differ depending on a diet. Modeling a healthy diet based on available knowledge on nutritional genetic and nutritional genomics is a promising trend within non-carcinogenic health risk management, including risks of oncological diseases caused by exposure to adverse environmental factors.

gene polymorphism, detoxification, environment, phenotype, genotype, nutritional genetics, nutritional genomics, nutrients, biologically active compounds
Mazhaeva T.V., Dubenko S.E., Chernova J.S., Nosova I.A. Molecular and genetic aspects of health risks and their associ-ation with adverse environmental conditions and diets (systemic review). Health Risk Analysis, 2022, no. 4, pp. 186–197. DOI: 10.21668/health.risk/2022.4.18.eng
  1. Shumatova T.A., Prikhodchenko N.G., Efremova I.V. Molecular-genetic and biochemical aspects of food intolerance in children. Voprosy detskoi dietologii, 2012, vol. 10, no. 3, pp. 14–17 (in Russian).
  2. Kosyakova N.I., Andreeva L.A., Pankratova E.V. Search for new ways to diagnose food allergies and food intolerance in children. Mezhdunarodnyi zhurnal prikladnykh i fundamental'nykh issledovanii, 2020, no. 8, pp. 32–36. DOI: 10.17513/mjpfi.13112 (in Russian).
  3. Gurova M.M., Romanova T.A., Popova V.S. The role of the intestinal microbiota in the formation of food intoltrance. Meditsina: teoriya i praktika, 2019, vol. 4, no. 1, pp. 229–232 (in Russian).
  4. Kasyanova T.A. Study of the influence of genetics and personalized nutrition and nutrilite vitamins to change the body weight of the person. Sovremennaya nauka i molodye uchenye: sbornik statei III Mezhdunarodnoi nauchno-prakticheskoi konferentsii, Penza, 2020, pp. 183–188 (in Russian).
  5. Mani M.S., Kabekkodu S.P., Joshi M.B., Dsouza H.S. Ecogenetics of lead toxicity and its influence on risk assessment. Hum. Exp. Toxicol., 2019, vol. 38, no. 9, pp. 1031–1059. DOI: 10.1177/0960327119851253
  6. Hoffjan S., Nicolae D., Ostrovnaya I., Roberg K., Evans M., Mirel D.B., Steiner L., Walker K. [et al.]. Gene-environment interaction effects on the development of immune responses in the 1st year of life. Am. J. Hum. Genet., 2005, vol. 76, no. 4, pp. 696–704. DOI: 10.1086/429418
  7. Zaytseva N.V., Ustinova O.Yu., Zemlyanova M.A. A strategic approaches to improving prevention of diseases asso-ciated with influence of environmental factors. ZNiSO, 2013, vol. 248, no. 11, pp. 14–18 (in Russian).
  8. Amromina A.M., Sitnikov I.A., Shaikhova D.R. The relationship of polymorphic variants of genes GSTM1, GSTT1, GSTP1 with the risk of developing diseases (literature review). Gigiena i sanitariya, 2021, vol. 100, no. 12, pp. 1385–1390. DOI: 10.47470/0016-9900-2021-100-12-1385-1390 (in Russian).
  9. Martino D.J, Prescott S.L. Silent mysteries: epigenetic paradigms could hold the key to conquering the epidemic of al-lergy and immune disease. Allergy, 2010, vol. 65, no. 1, pp. 7–15. DOI: 10.1111/j.1398-9995.2009.02186.x
  10. Soodaeva S.K. Svobodnoradikal'nye mekhanizmy povrezhdeniya pri boleznyakh organov dykhaniya [Free radical mechanisms of damage in diseases of the respiratory system]. Pul'monologiya, 2012, no. 1, pp. 5–10 (in Russian).
  11. Pankratova Yu.S., Galyautdinova R.R., Druzhinskaya O.I. Mutagennoe vozdeistvie ksenobiotikov na organizm cheloveka [Mutagenic effects of xenobiotics on the human body]. Aktual'nye voprosy estestvennykh i tekhnicheskikh nauk – 2017: sbornik materialov vserossiiskoi nauchno-prakticheskoi konferentsii s mezhdunarodnym uchastiem, 2017, pp. 61–66 (in Russian).
  12. Di Pietro G., Magno L.A.V., Rios-Santos F. Glutathione S-transferases: an overview in cancer research. Expert Opin. Drug Metab. Toxicol., 2010, vol. 6, no. 2, pp. 153–170. DOI: 10.1517/17425250903427980
  13. Schnekenburger M., Karius T., Diederich M. Regulation of epigenetic traits of the glutathione S-transferase P1 gene: from detoxification toward cancer prevention and diagnosis. Front. Pharmacol., 2014, vol. 5, pp. 170. DOI: 10.3389/fphar.2014.00170
  14. Henderson C.J., Wolf C.R. Disruption of the glutathione transferase Pi class genes. Methods Enzymol., 2005, vol. 401, pp. 116–135. DOI: 10.1016/s0076-6879(05)01007-4
  15. Tamer L., Calikoğlu M., Ates N.A., Yildirim H., Ercan B., Saritas E., Unlü A., Atik U. Glutathione‐S‐transferase gene polymorphisms (GSTT1, GSTM1, GSTP1) as increased risk factors for asthma. Respirology, 2004, vol. 9, no. 4, pp. 493–498. DOI: 10.1111/j.1440-1843.2004.00657.x
  16. Gilliland F.D., Gauderman W.J., Vora H., Rappaport E., Dubeau L. Effects of glutathione-S-transferase M1, T1, and P1 on childhood lung function growth. Am. J. Respir. Crit. Care Med., 2002, vol. 166, no. 5, pp. 710–716. DOI: 10.1164/rccm.2112065
  17. London S.J., Romieu I. Gene by environment interaction in asthma. Annu. Rev. Public Health, 2009, vol. 30, pp. 55–80. DOI: 10.1146/annurev.publhealth.031308.100151
  18. Spiteri M.A., Bianco A., Strange R.C., Fryer A.A. Polymorphisms at the glutathione S‐transferase, GSTP1 locus: a novel mechanism for susceptibility and development of atopic airway inflammation. Allergy, 2000, vol. 55, no. s61, pp. 15–20. DOI: 10.1034/j.1398-9995.2000.00502.x
  19. Leppilahti J., Majuri M.-L., Sorsa T., Hirvonen A., Piirilä P. Associations between glutathione-S-transferase genotypes and bronchial hyperreactivity patients with di-isocyanate induced asthma. A follow-up study. Front. Med. (Lausanne), 2019, vol. 6, pp. 220. DOI: 10.3389/fmed.2019.00220
  20. Reddy P., Naidoo R.N., Robins T.G., Mentz G., London S.J., Li H., Naidoo R. GSTM1, GSTP1, and NQO1 poly-morphisms and susceptibility to atopy and airway hyperresponsiveness among South African schoolchildren. Lung, 2010, vol. 188, no. 5, pp. 409–414. DOI: 10.1007/s00408-010-9246-3
  21. Melén E., Nyberg F., Lindgren C.M., Berglind N., Zucchelli M., Nordling E., Hallberg J., Svartengren M. [et al.]. In-teractions between glutathione S-transferase P1, tumor necrosis factor, and traffic-related air pollution for development of child-hood allergic disease. Environ. Health Perspect., 2008, vol. 116, no. 8, pp. 1077–1084. DOI: 10.1289/ehp.11117
  22. Shi M., Christensen K., Weinberg C.R., Romitti P., Bathum L., Lozada A., Morris R.W., Lovett M., Murray J.C. Oro-facial cleft risk is increased with maternal smoking and specific detoxification-gene variants. Am. J. Hum. Genet., 2007, vol. 80, no. 1, pp. 76–90. DOI: 10.1086/510518
  23. Welfare M., Adeokun A.M., Bassendine M.F., Daly A.K. Polymorphisms in GSTP1, GSTM1, and GSTT1 and sus-ceptibility to colorectal cancer. Cancer Epidemiol. Biomarkers Prev., 1999, vol. 8, no. 4, pt. 1, pp. 289–292.
  24. Pande M., Amos C.I., Osterwisch D.R., Chen J., Lynch P.M., Broaddus R., Frazier M.L. Genetic variation in genes for the xenobiotic-metabolizing enzymes CYP1A1, EPHX1, GSTM1, GSTT1, and GSTP1 and susceptibility to colorectal cancer in Lynch syndrome. Cancer Epidemiol. Biomarkers Prev., 2008, vol. 17, no. 9, pp. 2393–2401. DOI: 10.1158/1055-9965.EPI-08-0326
  25. Cai J., Zhao Y., Zhu C.L., Li J., Huang Z.H. The association of NAT1 polymorphisms and colorectal carcinoma risk: evidence from 20,000 subjects. Mol. Biol. Rep., 2012, vol. 39, no. 7, pp. 7497–7503. DOI: 10.1007/s11033-012-1583-2
  26. Nöthlings U., Yamamoto J.F., Wilkens L.R., Murphy S.P., Park S.-Y., Henderson B.E., Kolonel L.N., Le Marchand L. Meat and heterocyclic amine intake, smoking, NAT1 and NAT2 polymorphisms, and colorectal cancer risk in the multiethnic cohort study. Cancer Epidemiol. Biomarkers Prev., 2009, vol. 18, no. 7, pp. 2098–2106. DOI: 10.1158/1055-9965.EPI-08-1218
  27. Matic M., Pekmezovic T., Djukic T., Mimic-Oka J., Dragicevic D., Krivic B., Suvakov S., Savic-Radojevic A. [et al.]. GSTA1, GSTM1, GSTP1, and GSTT1 polymorphisms and susceptibility to smoking-related bladder cancer: a case-control study. Urol. Oncol., 2013, vol. 31, no. 7, pp. 1184–1192. DOI: 10.1016/j.urolonc.2011.08.005
  28. Mapp C.E., Fryer A.A., De Marzo N., Pozzato V., Padoan M., Boschetto P., Strange R.C., Hemmingsen A., Spiteri M.A. Glutathione S-transferase GSTP1 is a susceptibility gene for occupational asthma induced by isocyanates. J. Allergy Clin. Immunol., 2002, vol. 109, no. 5, pp. 867–872. DOI: 10.1067/mai.2002.123234
  29. Mel'nichenko M.A., Mal'tseva N.V., Lykova O.F., Konysheva E.V., Zabelin V.I., Onishchenko A.L. Association of glutathione-S-transferase-π1 gene polymorphisms with ophthalmopathology in metallurgical workers. Molekulyarnaya meditsina, 2011, no. 1, pp. 22–27 (in Russian).
  30. Onishchenko A.L., Maltseva N.V., Smirnova A.S., Kazantseva O.M., Makogon S.I. A Personalized Approach to the Treatment of Primary Open-Angle Glaucoma. Oftal'mologiya, 2021, vol. 18, no. 3, pp. 546–551. DOI: 10.18008/1816-5095-2021-3-546-551 (in Russian).
  31. Xu P., Zhu Y., Liang X., Gong C., Xu Y., Huang C., Liu X.-L., Zhou J.-C. Genetic polymorphisms of superoxide dismutase 1 are associated with the serum lipid profiles of Han Chinese adults in a sexually dimorphic manner. PLoS One, 2020, vol. 15, no. 6, pp. e0234716. DOI: 10.1371/journal.pone.0234716
  32. Mondola P., Serù R., Santillo M., Damiano S., Bifulco M., Laezza C., Formisano P., Rotilio G., Ciriolo M.R. Effect of Cu, Zn superoxide dismutase on cholesterol metabolism in human hepatocarcinoma (HepG2) cells. Biochem. Biophys. Res. Commun., 2002, vol. 295, no. 3, pp. 603–609. DOI: 10.1016/s0006-291x(02)00720-9
  33. Bhatti P., Stewart P.A., Linet M.S., Blair A., Inskip P.D., Rajaraman P. Comparison of occupational exposure as-sessment methods in a case–control study of lead, genetic susceptibility and risk of adult brain tumours. Occup. Environ. Med., 2011, vol. 68, no. 1, pp. 4–9. DOI: 10.1136/oem.2009.048132
  34. Liao L.M., Friesen M.C., Xiang Y.-B., Cai H., Koh D.-H., Ji B.-T., Yang G., Li H.-L. [et al.]. Occupational lead ex-posure and associations with selected cancers: the shanghai men’s and women’s health study cohorts. Environ. Health Perspect., 2016, vol. 124, no. 1, pp. 97–103. DOI: 10.1289/ehp.1408171
  35. Gallagher C.J., Ahn K., Knipe A.L., Dyer A.-M., Richie J.P. Jr., Lazarus P., Muscat J.E. Association between haplo-types of manganese superoxide dismutase (SOD2), smoking, and lung cancer risk. Free Radic. Biol. Med., 2009, vol. 46, no. 1, pp. 20–24. DOI: 10.1016/j.freeradbiomed.2008.09.018
  36. Li X.-D., Chen J.-X., Liu Y.-M., Su S.-B., Guo X. [Association between SNPs in SOD1 and noise-induced hearing loss in Chinese Han population]. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi [Chinese journal of industrial hygiene and occupational diseases], 2011, vol. 29, no. 12, pp. 921–924 (in Chinese).
  37. Luning Prak E.T., Kazazian H.H. Jr. Mobile elements and the human genome. Nat. Rev. Genet., 2000, vol. 1, no. 2, pp. 134–144. DOI: 10.1038/35038572
  38. Pickeral O.K., Makałowski W., Boguski M.S., Boeke J.D. Frequent human genomic DNA transduction driven by LINE-1 retrotransposition. Genome Res., 2000, vol. 10, no. 4, pp. 411–415. DOI: 10.1101/gr.10.4.411
  39. Sheen F., Sherry S.T., Risch G.M., Robichaux M., Nasidze I., Stoneking M., Batzer M.A., Swergold G.D. Reading between the LINEs: human genomic variation induced by LINE-1 retrotransposition. Genome Res., 2000, vol. 10, no. 10, pp. 1496–1508. DOI: 10.1101/gr.149400
  40. Morales M.E., Servant G., Ade C., Roy-Engel A.M. Altering genomic integrity: heavy metal exposure promotes trans-posable element-mediated damage. Biol. Trace Elem. Res., 2015, vol. 166, no. 1, pp. 24–33. DOI: 10.1007/s12011-015-0298-3
  41. Kakkoura M.G., Loizidou M.A., Demetriou C.A., Loucaides G., Daniel M., Kyriacou K., Hadjisavvas A. The syner-gistic effect between the Mediterranean diet and GSTP1 or NAT2 SNPs decreases breast cancer risk in Greek-Cypriot women. Eur. J. Nutr., 2017, vol. 56, no. 2, pp. 545–555. DOI: 10.1007/s00394-015-1099-3
  42. Steinbrecher A., Rohrmann S., Timofeeva M., Risch A., Jansen E., Linseisen J. Dietary glucosinolate intake, poly-morphisms in selected biotransformation enzymes, and risk of prostate cancer. Cancer Epidemiol. Biomarkers Prev., 2010, vol. 19, no. 1, pp. 135–143. DOI: 10.1158/1055-9965.EPI-09-0660
  43. Lampe J.W. Interindividual differences in response to plant-based diets: implications for cancer risk. Am. J. Clin. Nutr., 2009, vol. 89, no. 5, pp. 1553S–1557S.
  44. Spitz M.R., Duphorne C.M., Detry M.A., Pillow P.C., Amos C.I., Lei L., de Andrade M., Gu X. [et al.]. Dietary intake of isothiocyanates: evidence of a joint effect with glutathione S-transferase polymorphisms in lung cancer risk. Cancer Epidemiol. Biomarkers Prev., 2000, vol. 9, no. 10, pp. 1017–1020.
  45. Tijhuis M.J., Wark P.A., Aarts J.M.M.J.G., Visker M.H.P.W., Nagengast F.M., Kok F.J., Kampman E. GSTP1 and GSTA1 polymorphisms interact with cruciferous vegetable intake in colorectal adenoma risk. Cancer Epidemiol. Biomarkers Prev., 2005, vol. 14, no. 12, pp. 2943–2951. DOI: 10.1158/1055-9965.EPI-05-0591
  46. Boronat A., Rodriguez-Morató J., Serreli G., Fitó M., Tyndale R.F., Deiana M., de la Torre R. Contribution of Bio-transformations Carried Out by the Microbiota, Drug-Metabolizing Enzymes, and Transport Proteins to the Biological Activities of Phytochemicals Found in the Diet. Adv. Nutr., 2021, vol. 12, no. 6, pp. 2172–2189. DOI: 10.1093/advances/nmab085
  47. Villatoro-Pulido M., Font R., Saha S., Obregón-Cano S., Anter J., Muñoz-Serrano A., De Haro-Bailón A., Alonso-Moraga A., Del Río-Celestino M. In vivo biological activity of rocket extracts (Eruca vesicaria subsp. sativa (Miller) Thell) and sulforaphane. Food Chem. Toxicol., 2012, vol. 50, no. 5, pp. 1384–1392. DOI: 10.1016/j.fct.2012.02.017
  48. Erwin J.A., Marchetto M.C., Gage F.H. Mobile DNA elements in the generation of diversity and complexity in the brain. Nat. Rev. Neurosci., 2014, vol. 15, no. 8, pp. 497–506. DOI: 10.1038/nrn3730
  49. Beetch M., Harandi-Zadeh S., Shen K., Lubecka K., Kitts D.D., O’Hagan H.M., Stefanska B. Dietary antioxidants re-model DNA methylation patterns in chronic disease. Br. J. Pharmacol., 2020, vol. 177, no. 6, pp. 1382–1408. DOI: 10.1111/bph.14888
  50. Soda K. Overview of Polyamines as Nutrients for Human Healthy Long Life and Effect of Increased Polyamine Intake on DNA Methylation. Cells, 2022, vol. 11, no. 1, pp. 164. DOI: 10.3390/cells11010164
  51. Park M.-K., Lee J.-C., Lee J.-W., Kang S., Kim J.H., Park M.H., Hwang S.-J., Lee M.J. Effects of fermented rice bran on DEN‐induced oxidative stress in mice: GSTP1, LINE‐1 methylation, and telomere length ratio. J. Food Biochem., 2020, vol. 44, no. 7, pp. e13274. DOI: 10.1111/jfbc.13274
  52. Zaynullin R.A., Khusnutdinova E.K., Ilyina A.D., Kunakova R.V., Yalaev B.I. Effect of flavonoids on expression of human genes. Vestnik Bashkirskogo universiteta, 2018, vol. 23, no. 2, pp. 395–405 (in Russian).
  53. Nasir A., Hassan Bullo M.M., Ahmed Z., Imtiaz A., Yaqoob E., Jadoon M., Ahmed H., Afreen A., Yaqoob S. Nutri-genomics: Epigenetics and cancer prevention: A comprehensive review. Crit. Rev. Food Sci. Nutr., 2020, vol. 60, no. 8, pp. 1375–1387. DOI: 10.1080/10408398.2019.1571480
  54. Heber D. Vegetables, fruits and phytoestrogens in the prevention of diseases. J. Postgrad. Med., 2004, vol. 50, no. 2, pp. 145–149.
  55. Vardi A., Bosviel R., Rabiau N., Adjakly M., Satih S., Dechelotte P., Boiteux J.-P., Fontana L. [et al.]. Soy phytoes-trogens modify DNA methylation of GSTP1, RASSF1A, EPH2 and BRCA1 promoter in prostate cancer cells. In Vivo, 2010, vol. 24, no. 4, pp. 393–400.
  56. Kim J., Kim H., Lee J., Choi I.J., Kim Y.-I., Kim J. Antioxidant-rich diet, GSTP1 rs1871042 polymorphism, and gastric cancer risk in a hospital-based case-control study. Front. Oncol., 2021, vol. 10, pp. 596355. DOI: 10.3389/fonc.2020.596355
  57. Nielsen S.S., Mueller B.A., Preston-Martin S., Farin F.M., Holly E.A., McKean-Cowdin R. Childhood brain tumors and maternal cured meat consumption in pregnancy: differential effect by glutathione S-transferases. Cancer Epidemiol. Bio-markers Prev., 2011, vol. 20, no. 11, pp. 2413–2419. DOI: 10.1158/1055-9965.EPI-11-0196
  58. Nelyubina E.G. Molekulyarnye mekhanizmy vozdeistviya pishchi na geny [Molecular mechanisms of food influence on genes]. Paradigma, 2019, no. 3, pp. 81–83.
  59. He H., Ma Y., Huang H., Huang C., Chen Z., Chen D., Gu Y., Wang X., Chen J. A comprehensive understanding about the pharmacological effect of diallyl disulfide other than its anti-carcinogenic activities. Eur. J. Pharmacol., 2021, vol. 893, pp. 173803. DOI: 10.1016/j.ejphar.2020.173803
  60. Zhang C.-L., Zeng T., Zhao X.-L., Xie K.-Q. Garlic oil attenuated nitrosodiethylamine-induced hepatocarcinogenesis by modulating the metabolic activation and detoxification enzymes. Int. J. Biol. Sci., 2013, vol. 9, no. 3, pp. 237–245. DOI: 10.7150/ijbs.5549
  61. Tsai C.W., Yang J.-J., Chen H.-W., Sheen L.-Y., Lii C.-K. Garlic organosulfur compounds upregulate the expression of the π class of glutathione S-transferase in rat primary hepatocytes. J. Nutr., 2005, vol. 135, no. 11, pp. 2560–2565. DOI: 10.1093/jn/135.11.2560
  62. Price P.T., Nelson C.M., Clarke S.D. Omega-3 polyunsaturated fatty acid regulation of gene expression. Curr. Opin. Lipidol., 2000, vol. 11, no. 1, pp. 3–7. DOI: 10.1097/00041433-200002000-00002
  63. Novikov P.V. Nutrigenetics and nutrigenomics: new trends in nutrition science in the postgenomic period. Voprosy detskoi dietologii, 2012, vol. 10, no. 1, pp. 44–52.
  64. Simopoulos A.P. Evolutionary aspects of diet, the omega-6/omega-3 ratio and genetic variation: nutritional implications for chronic diseases. Biomed. Pharmacother., 2006, vol. 60, no. 9, pp. 502–507. DOI: 10.1016/j.biopha.2006.07.080
  65. Watts J.L. Using Caenorhabditis elegans to uncover conserved functions of omega-3 and omega-6 fatty acids. J. Clin. Med., 2016, vol. 5, no. 2, pp. 19. DOI: 10.3390/jcm5020019
  66. Paul B., Barnes S., Demark-Wahnefried W., Morrow C., Salvador C., Skibola C., Tollefsbol T.O. Influences of diet and the gut microbiome on epigenetic modulation in cancer and other diseases. Clin. Epigenetics, 2015, vol. 7, pp. 112. DOI: 10.1186/s13148-015-0144-7
  67. Tomas-Barberan F.A., Gonzalez-Sarrias A., Garcia-Villalba R., Nunez-Sanchez M.A., Selma M.V., Garcia-Conesa M.T., Espin J.C. Urolithins, the rescue of “old” metabolites to understand a “new” concept: metabotypes as a nexus among phe-nolic metabolism, microbiota dysbiosis, and host health status. Mol. Nutr. Food Res., 2017, vol. 61, no. 1, pp. 1500901. DOI: 10.1002/mnfr.201500901
  68. Averina O.V., Ermolenko E.I., Ratushniy A.Yu., Tarasova E.A., Borschev Yu.Yu., Leontieva G.F., Kramskaya T.A., Kotyleva M.P. [et al.]. Influence of probiotics on cytokine production in the in vitro and in vivo systems. Meditsinskaya immunologiya, 2015, vol. 17, no. 5, pp. 443–454. DOI: 10.15789/1563-0625-2015-5-443-454 (in Russian).
  69. Yuille S., Reichardt N., Panda S., Dunbar H., Mulder I.E. Human gut bacteria as potent class I histone deacetylase in-hibitors in vitro through production of butyric acid and valeric acid. PLoS One, 2018, vol. 13, no. 7, pp. e0201073. DOI: 10.1371/journal.pone.0201073
  70. Leonardson A.S., Zhu J., Chen Y., Wang K., Lamb J.R., Reitman M., Emilsson V., Schadt E.E. The effect of food in-take on gene expression in human peripheral blood. Hum. Mol. Genet., 2010, vol. 19, no. 1, pp. 159–169. DOI: 10.1093/hmg/ddp476
  71. Jagoe R.T., Lecker S.H., Gomes M., Goldberg A.L. Patterns of gene expression in atrophying skeletal muscles: re-sponse to food deprivation. FASEB J., 2002, vol. 16, no. 13, pp. 1697–1712. DOI: 10.1096/fj.02-0312com
  72. Fenech M., El-Sohemy A., Cahill L., Ferguson L.R., French T.-A.C., Tai E.S., Milner J., Koh W.-P. [et al.]. Nutri-genetics and nutrigenomics: viewpoints on the current status and applications in nutrition research and practice. J. Nutrigenet. Nutrigenomics, 2011, vol. 4, no. 2, pp. 69–89. DOI: 10.1159/000327772
  73. Laddu D., Hauser M. Addressing the nutritional phenotype through personalized nutrition for chronic disease preven-tion and management. Prog. Cardiovasc. Dis., 2019, vol. 62, no. 1, pp. 9–14. DOI: 10.1016/j.pcad.2018.12.004
Accepted for publication: 

You are here