Patient-specific 0D–3D modeling of blood flow in newborns to predict risks of complications after surgery

View or download the full article: 
532: [612.1+616.1]

A.G. Kuchumov1, M.R. Kamaltdinov2, A.R. Khairulin1, M.V. Kochergin1, M.I. Shmurak1


1Perm National Research Polytechnic University, 29 Komsomolskii Ave., Perm, 614990, Russian Federation
2Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, 82 Monastyrskaya Str., Perm, 614045, Russian Federation


Abnormal developments of the cardiovascular system are common congenital malformations. Computational fluid dynamics and mathematical modeling can be used to perform quantitative predictive assessments of hemodynamic properties in varied conditions.
This article addresses the development of a coupled 0D–3D model of blood flow in newborns to predict risks of complications after surgery. The 0D-model of systemic circulations is created by using the analogy between the blood flow in vessels and the flow of current through an electric circuit. A shunted section of the aorta and pulmonary artery is replaced with a 3D-model with two-way fluid-solid interaction (FSI).A section in a vessel with the aortic valve is examined in a separate 3D-model. Three-dimensional geometry is based on real CT-scans of a patient. The algorithm for coupling models of different levels relies on meeting the condition that pressures and volumetric blood flows are equal at the interaction boundary.
We have developed an algorithm for identifying personal parameters from the results obtained by solving an optimization problem. Computational experiments with different individual geometry of the aorta and aortic valve made it possible to analyze blood flow velocities, near-wall stresses, flows, and valve deformations. Observable near-wall stresses can be considered risk factors that could cause calcification on valve leaflets and other valve diseases.
Computational solutions in the “aorta – shunt – pulmonary artery” 3D-system allowed obtaining spatial distributions of velocities, pressures, near-wall stresses and other parameters that are significant in respect to probable pathology development. The developed approaches are primarily relevant for decision-making in surgical practice to predict risks of postoperative complications. In future, our plans are to develop the model so that it covers also saturation and oxygen exchange. This is necessary for assessing whether oxygen supply to the lungs is adequate.

0D–3D model of blood flow, coupling algorithm, identification of parameters, patient-oriented, aorta, heart valve, newborn, shunt, risk of postoperative complications
Kuchumov A.G., Kamaltdinov M.R., Khairulin A.R., Kochergin M.V., Shmurak M.I. Patient-specific 0D–3D modeling of blood flow in newborns to predict risks of complications after surgery. Health Risk Analysis, 2022, no. 4, pp. 159–167. DOI: 10.21668/health.risk/2022.4.15.eng
  1. Driscoll D.J., Michels V.V., Gersony W.M., Hayes C.J., Keane J.F., Kidd L., Pieroni D.R., Rings L.J. [et al.]. Occur-rence risk for congenital heart defects in relatives of patients with aortic stenosis, pulmonary stenosis, or ventricular septal defect. Circulation, 1993, vol. 87, suppl. 2, pp. I114–I120.
  2. Moulton A.L., Brenner J.I., Ringel R., Nordenberg A., Berman M.A., Ali S., Burns J. Classic versus modified Blalock-Taussig shunts in neonates and infants. Circulation, 1985, vol. 72, no. 3, pt 2, pp. II35–II44.
  3. De Leval M.R., McKay R., Jones M., Stark J., Macartney F.J. Modified Blalock-Taussig shunt. Use of subclavian artery orifice as flow regulator in prosthetic systemic-pulmonary artery shunts. J. Thorac. Cardiovasc. Surg., 1981, vol. 81, no. 1, pp. 112–119.
  4. Myers J.W., Ghanayem N.S., Cao Y., Simpson P., Trapp K., Mitchell M.E., Tweddell J.S., Woods R.K. Outcomes of systemic to pulmonary artery shunts in patients weighing less than 3 kg: analysis of shunt type, size, and surgical approach. J. Thorac. Cardiovasc. Surg., 2014, vol. 147, no. 2, pp. 672–677. DOI: 10.1016/j.jtcvs.2013.09.055
  5. Ahmad U., Fatimi S.H., Naqvi I., Atiq M., Moizuddin S.S., Sheikh K.B., Shahbuddin S., Naseem T.M., Javed M.A. Modified Blalock-Taussig shunt: immediate and short-term follow-up results in neonates. Heart Lung Circ., 2008, vol. 17, no. 1, pp. 54–58. DOI: 10.1016/j.hlc.2007.06.003
  6. Dirks V., Prêtre R., Knirsch W., Valsangiacomo Buechel E.R., Seifert B., Schweiger M., Hübler M., Dave H. Modified Blalock Taussig shunt: a not-so-simple palliative procedure. Eur. J. Cardiothorac. Surg., 2013, vol. 44, no. 6, pp. 1096–1102. DOI: 10.1093/ejcts/ezt172
  7. Gedicke M., Morgan G., Parry A., Martin R., Tulloh R. Risk factors for acute shunt blockage in children after modified Blalock-Taussig shunt operations. Heart Vessels, 2010, vol. 25, no. 5, pp. 405–409. DOI: 10.1007/s00380-009-1219-1
  8. Sun L., Chandra S., Sucosky P. Ex vivo evidence for the contribution of hemodynamic shear stress abnormalities to the early pathogenesis of calcific bicuspid aortic valve disease. PLoS One, 2012, vol. 7, no. 10, pp. e48843. DOI: 10.1371/journal.pone.0048843
  9. Ruiz J.L., Hutcheson J.D., Aikawa E. Cardiovascular calcification: current controversies and novel concepts. Cardio-vasc. Pathol., 2015, vol. 24, no. 4, pp. 207–212. DOI: 10.1016/j.carpath.2015.03.002
  10. Maganti K., Rigolin V.H., Sarano M.E., Bonow R.O. Valvular heart disease: diagnosis and management. Mayo Clin. Proc., 2010, vol. 85, no. 5, pp. 483–500. DOI: 10.4065/mcp.2009.0706
  11. Votta E., Le T.B., Stevanella M., Fusini L., Caiani E.G., Redaelli A., Sotiropoulos F. Toward patient-specific simulations of cardiac valves: state-of-the-art and future directions. J. Biomech., 2013, vol. 46, no. 2, pp. 217–228. DOI: 10.1016/j.jbiomech.2012.10.026
  12. Ceballos A., Prather R., Divo E., Kassab A.J., DeCampli W.M. Patient-Specific Multi-Scale Model Analysis of He-modynamics Following the Hybrid Norwood Procedure for Hypoplastic Left Heart Syndrome: Effects of Reverse Blalock-Taussig Shunt Diameter. Cardiovasc. Eng. Technol., 2019, vol. 10, no. 1, pp. 136–154. DOI: 10.1007/s13239-018-00396-w
  13. Corsini C., Baker C., Kung E., Schievano S., Arbia G., Baretta A., Biglino G., Migliavacca F. [et al.]. An integrated approach to patient-specific predictive modeling for single ventricle heart palliation. Comput. Methods Biomech. Biomed.
    Engin., 2014, vol. 17, no. 14, pp. 1572–1589. DOI: 10.1080/10255842.2012.758254
  14. Chi Z., Beile L., Deyu L., Yubo F. Application of multiscale coupling models in the numerical study of circulation system. Medicine in Novel Technology and Devices, 2022, vol. 14, pp. 100117. DOI: 10.1016/j.medntd.2022.100117
  15. Dobroserdova T., Olshanskii M., Simakov S. Multiscale coupling of compliant and rigid walls blood flow models. In-ternational journal for numerical methods in fluids, 2016, vol. 82, no. 12, pp. 799–817. DOI: 10.1002/fld.4241
  16. Shavik S.M., Tossas-Betancourt C., Figueroa C.A., Baek S., Lee L.C. Multiscale Modeling Framework of Ventricular-Arterial Bi-directional Interactions in the Cardiopulmonary Circulation. Front. Physiol., 2020, vol. 11, pp. 2. DOI: 10.3389/fphys.2020.00002
  17. Augustin C.M., Gsell M.A.F., Karabelas E., Willemen E., Prinzen F.W., Lumens J., Vigmond E.J., Plank G. A com-putationally efficient physiologically comprehensive 3D–0D closed-loop model of the heart and circulation. Comput. Methods Appl. Mech. Eng., 2021, vol. 386, pp. 114092. DOI: 10.1016/j.cma.2021.114092
  18. Mercuri M., Wustmann K., von Tengg-Kobligk H., Göksu C., Hose D.R., Narracott A. Subject-specific simulation for non-invasive assessment of aortic coarctation: Towards a translational approach. Med. Eng. Phys., 2020, vol. 77, pp. 69–79. DOI: 10.1016/j.medengphy.2019.12.003
  19. Mao W., Caballero A., McKay R., Primiano C., Sun W. Fully-coupled fluid-structure interaction simulation of the aortic and mitral valves in a realistic 3D left ventricle model. PLoS One, 2017, vol. 12, no. 9, pp. e0184729. DOI: 10.1371/journal.pone.0184729
  20. Spühler J.H., Jansson J., Jansson N., Hoffman J. 3D Fluid-Structure Interaction Simulation of Aortic Valves Using a Unified Continuum ALE FEM Model. Front. Physiol., 2018, vol. 9, pp. 363. DOI: 10.3389/fphys.2018.00363
  21. Hsu M.C., Kamensky D., Bazilevs Y., Sacks M.S., Hughes T.J. Fluid-structure interaction analysis of bioprosthetic heart valves: Significance of arterial wall deformation. Comput. Mech., 2014, vol. 54, no. 4, pp. 1055–1071. DOI: 10.1007/s00466-014-1059-4
  22. Luraghi G., Wu W., De Gaetano F., Rodriguez Matas J.F., Moggridge G.D., Serrani M., Stasiak J., Costantino M.L., Migliavacca F. Evaluation of an aortic valve prosthesis: Fluid-structure interaction or structural simulation? J. Biomech., 2017, vol. 58, pp. 45–51. DOI: 10.1016/j.jbiomech.2017.04.004
  23. Kamaltdinov M.R., Kuchumov A.G. Application of a mathematical model of systemic circulation for determination of blood flow parameters after modified Blalock-Taussig shunt operation in newborns. Russian Journal of Biomechanics, 2021, vol. 25, no. 3, pp. 268–284. DOI: 10.15593/RJBiomech/2021.3.07
  24. Amindari A., Saltik L., Kirkkopru K., Yacoub M., Yalcin H.C. Assessment of calcified aortic valve leaflet deformations and blood flow dynamics using fluid-structure interaction modeling. Inform. Med. Unlocked, 2017, vol. 9, pp. 191–199. DOI: 10.1016/j.imu.2017.09.001
  25. Zhao X., Liu Y., Ding J., Ren X., Bai F., Zhang M. Hemodynamic effects of the anastomoses in the modified Blalock–Taussig shunt: a numerical study using a 0D/3D coupling method. J. Mech. Med. Biol., 2015, vol. 15, no. 01, pp. 1550017. DOI: 10.1142/S0219519415500177
  26. Young D.F. Fluid mechanics of arterial stenosis. J. Biomech. Eng., 1979, vol. 101, pp. 157–175. DOI: 10.1115/1.3426241
  27. Kuchumov А.G., Khairulin А.R., Biyanov A.N., Porodikov А.А., Arutyunyan V.B., Sinelnikov Yu.S. Effectiveness of Blalock-Taussig shunt performance in the congenital heart disease children. Russian Journal of Biomechanics, 2020, vol. 24, no. 1, pp. 65–83. DOI: 10.15593/RJBiomech/2020.1.08
  28. Kuchumov A.G., Khairulin A., Shmurak M., Porodikov A., Merzlyakov A. The Effects of the Mechanical Properties of Vascular Grafts and an Anisotropic Hyperelastic Aortic Model on Local Hemodynamics during Modified Blalock-Taussig Shunt Operation, Assessed Using FSI Simulation. Materials (Basel), 2022, vol. 15, no. 8, pp. 2719. DOI: 10.3390/ma15082719
Accepted for publication: 

You are here