NFAT gene polymorphism as a risk factor of knee osteoarthrosis

View or download the full article: 
UDC: 
616.728.3-007.248
Authors: 

V.B. Novakov1,2, O.N. Novakova1, M.I. Churnosov1

Organization: 

1Belgorod National Research University, 85 Pobedy Str., Belgorod, 308015, Russian Federation
2City Hospital No. 2, 46 Gubkina Str., Belgorod, 308036, Russian Federation

Abstract: 

Knee osteoarthrosis (OA) is a multifactorial disease with genetic factors playing an important part in its development. Our research goal was to examine associations between polymorphic variants rs1060105 and rs56116847 of SBNO1 gene, rs6499244 of NFAT5 gene and rs34195470 of WWP2 gene and developing stage 4 knee osteoarthrosis in people living in the Central Chernozem Region in Russia.
Genotyping of polymorphic loci of candidate genes was accomplished in 95 patients with stage 4 knew osteoarthrosis and 500 people without the disease who were included into the reference group. We estimated associations between polymorphic loci of candidate genes and knee OA by using logistic linear regression within the allele, additive, recessive and dominant genetic models with gPLINK software.
As a result, we replicated an association between a GWAS-significant rs6499244 polymorphism of NFAT5 gene and knee OA in people living in the Central Chernozem Region in Russia. An allele variant A of rs6499244 of NFAT5 gene was established to be “a risk factor” regarding stage 4 knee OA within the additive (OR = 1.61, рperm = 0.02) and recessive (OR = 2.07, рperm = 0.02) genetic models. The rs6499244 locus of NFAT5 gene is located in an area of DNAse I hypersensitivity; it increases DNA affinity to four transcription factors (CDP_6, RFX5_known1, RORalpha1_2, TCF4_known1); it is localized in functionally active promoters and enhancers; it is associated with expression of nine genes (CLEC18A, COG4, EXOSC6, NFAT5, NOB1, NPIPB14P, NQO1, PDXDC2P, SMG1P7) and alternative mRNA splicing of three genes (NOB1, NPIPB14P, NQO1) in various organs and tissues in the body including those that are pathogenetically significant for OA (fat tissue, tibial nerves and arteries, and skeletal muscles).

Keywords: 
knee osteoarthritis, NFAT5 gene, polymorphic locus, associations, candidate genes, risk factor, nuclear factor of activated T cells 5, evaluation of functional effects produced by polymorphism
Novakov V.B., Novakova O.N., Churnosov M.I. NFAT5 gene polymorphism as a risk factor of knee osteoarthrosis. Health Risk Analysis, 2022, no. 4, pp. 137–147. DOI: 10.21668/health.risk/2022.4.13.eng
References: 
  1. Madry H., Kon E., Condello V., Peretti G.M., Steinwachs M., Seil R., Berruto M., Engebretsen L. [et al.]. Early osteoarthritis of the knee. Knee Surg. Sports Traumatol. Arthrosc., 2016, vol. 24, no. 6, pp. 1753–1762. DOI: 10.1007/s00167-016-4068-3
  2. Alekseeva L.I., Taskina E.A., Kashevarova N.G. Osteoarthritis: epidemiology, classification, risk factors, and pro-gression, clinical presentation, diagnosis, and treatment. Sovremennaya Revmatologiya, 2019, vol. 13, no. 2, pp. 9–21. DOI: 10.14412/1996-7012-2019-2-9-21 (in Russian).
  3. Branco J.C., Rodrigues A.M., Gouveia N., Eusébio M., Ramiro S., Machado P.M., da Costa L.P., Mourão A.F. [et al.]. Prevalence of rheumatic and musculoskeletal diseases and their impact on healthrelated quality of life, physical function and mental health in Portugal: results from EpiReumaPt – a national health survey. RMD Open, 2016, vol. 2, no. 1, pp. e000166. DOI: 10.1136/rmdopen-2015-000166
  4. Wallace I.J., Worthington S., Felson D.T., Jurmain R.D., Wren K.T., Maijanen H., Woods R.J., Lieberman D.E. Knee osteoarthritis has doubled in prevalence since the mid-20th century. Proc. Natl Acad. Sci. USA, 2017, vol. 114, no. 35, pp. 9332–9336. DOI: 10.1073/pnas.1703856114
  5. Balabanova R.M., Erdes S.F. Trends in the prevalence of rheumatic diseases in ICD-10 in the adult population of the Russian Federation over 2000–2010. Nauchno-prakticheskaya revmatologiya, 2012, vol. 50, no. 3, pp. 10–12. DOI: 10.14412/1995-4484-2012-702 (in Russian).
  6. Comas M., Sala M., Romаn R., Castells X. Impact of the distinct diagnostic criteria used in population-based studies on estimation of the prevalence of knee osteoarthritis. Gac. Sanit., 2010, vol. 24, no. 1, pp. 28–32. DOI: 10.1016/j.gaceta.2009.06.002 (in Spanish).
  7. Bijlsma J.W.J., Berenbaum F., Lafeber F.P.J.G. Osteoarthritis: an update with relevance for clinical practice. Lancet, 2011, vol. 377, no. 9783, pp. 2115–2126. DOI: 10.1016/S0140-6736(11)60243-2
  8. Kim C., Linsenmeyer K.D., Vlad S.C., Guermazi A., Clancy M.M., Niu J., Felson D.T. Prevalence of radiographic and symptomatic osteoarthritis in an urban United States community: the Framingham osteoarthritis study. Arthritis Rheumatol., 2014, vol. 66, no. 11, pp. 3013–3017. DOI: 10.1002/art.38795
  9. Zhang Y., Xu L., Nevitt M.C., Aliabadi P., Yu W., Qin M., Lui L.-Y., Felson D.T. Comparison of the prevalence of knee osteoarthritis between the elderly Chinese population in Beijing and whites in the United States: The Beijing Osteoarthritis Study. Arthritis Rheum., 2011, vol. 44, no. 9, pp. 2065–2071. DOI: 10.1002/1529-0131(200109)44:93.0.CO;2-Z
  10. Ho-Pham L.T., Lai T.Q., Mai L.D., Doan M.C., Pham H.N., Nguyen T.V. Prevalence of radiographic osteoarthritis of the knee and its relationship to self-reported pain. PLoS One, 2014, vol. 9, no. 4, pp. e94563. DOI: 10.1371/journal.pone.0094563
  11. Nguyen T.V. Osteoarthritis in southeast Asia. Int. J. Clin. Rheumatol., 2014, vol. 9, no. 5, pp. 405–408. Available at: https://www.openaccessjournals.com/articles/osteoarthritis-in-southeast-... (May 20, 2022).
  12. Lee S., Kim S.-J. Prevalence of knee osteoarthritis, risk factors, and quality of life: The Fifth Korean National Health And Nutrition Examination Survey. Int. J. Rheum. Dis., 2017, vol. 20, no. 7, pp. 809–817. DOI: 10.1111/1756-185X.12795
  13. Galushko E.A., Nasonov E.L. Prevalence of rheumatic diseases in Russia. Alʹmanakh klinicheskoi meditsiny, 2018, vol. 46, no. 1, pp. 32–39. DOI: 10.18786/2072-0505-2018-46-1-32-39 (in Russian).
  14. Panikar V.I., Shcherban E.A., Pavlova I.A. Complex geriatric assessment of osteoarthrosis of knee joints in the senior age. Nauchnye rezul'taty biomeditsinskikh issledovanii, 2019, vol. 5, no. 1, pp. 131–139. DOI: 10.18413/2313-8955-2019-5-1-0-10 (in Russian).
  15. Matveev R.P., Bragina S.V. Knee joint osteoarthrosis: problems and social significance. Ekologiya cheloveka, 2012, vol. 19, no. 9, pp. 53–62. DOI: 10.33396/1728-0869-2012-9-53-62 (in Russian).
  16. Novakov V.B., Novakova O.N., Churnosov M.I. Genome-wide studies of knee osteoarthritis: Review. Travmatologiya i ortopediya Rossii, 2021, vol. 27, no. 4, pp. 131–144. DOI: 10.21823/2311-2905-2021-27-1580 (in Russian).
  17. Zengini E., Finan C., Wilkinson J.M. The Genetic Epidemiological Landscape of Hip and Knee Osteoarthritis: Where Are We Now and Where Are We Going? J. Rheumatol., 2016, vol. 43, no. 2, pp. 260–266. DOI: 10.3899/jrheum.150710
  18. Evangelou E., Kerkhof H.J., Styrkarsdottir U., Ntzani E.E., Bos S.D., Esko T., Evans D.S., Metrustry S. [et al.]. A meta-analysis of genome-wide association studies identifies novel variants associated with osteoarthritis of the hip. Ann. Rheum. Dis., 2014, vol. 73, no. 12, pp. 2130–2136. DOI: 10.1136/annrheumdis-2012-203114
  19. Meulenbelt I., Chapman K., Dieguez-Gonzalez R., Shi D., Tsezou A., Dai J., Malizos K.N., Kloppenburg M. [et al.]. Large replication study and meta-analyses of DVWA as an osteoarthritis susceptibility locus in European and Asian populations. Hum. Mol. Genet., 2009, vol. 18, no. 8, pp. 1518–1523. DOI: 10.1093/hmg/ddp053
  20. Shi D., Zheng Q., Chen D., Zhu L., Qin A., Fan J., Liao J., Xu Z. [et al.]. Association of single-nucleotide polymor-phisms in HLA class II/III region with knee osteoarthritis. Osteoarthritis Cartilage, 2010, vol. 18, no. 11, pp. 1454–1457. DOI: 10.1016/j.joca.2010.07.009
  21. Nakajima M., Shi D., Dai J., Tsezou A., Zheng M., Norman P.E., Chou C.-H., Lee M.T.M. [et al.]. A large-scale replication study for the association of rs17039192 in HIF-2α with knee osteoarthritis. J. Orthop. Res., 2012, vol. 30, no. 8, pp. 1244–1248. DOI: 10.1002/jor.22063
  22. Valdes A.M., Styrkarsdottir U., Doherty M., Morris D.L., Mangino M., Tamm A., Doherty S.A., Kisand K. [et al.]. Large scale replication study of the association between HLA class II/BTNL2 variants and osteoarthritis of the knee in European-descent populations. PLoS One, 2011, vol. 6, no. 8, pp. e23371. DOI: 10.1371/journal.pone.0023371
  23. Dai J., Ying P., Shi D., Hou H., Sun Y., Xu Z., Chen D., Zhang G. [et al.]. FTO variant is not associated with osteoar-thritis in the Chinese Han population: replication study for a genome-wide association study identified risk loci. J. Orthop. Surg. Res., 2018, vol. 13, no. 1, pp. 65. DOI: 10.1186/s13018-018-0769-2
  24. Zhao T., Zhao J., Ma C., Wei J., Wei B., Liu J. Evaluation of Relationship Between Common Variants in FGF18 Gene and Knee Osteoarthritis Susceptibility. Arch. Med. Res., 2020, vol. 51, no. 1, pp. 76–81. DOI: 10.1016/j.arcmed.2019.12.007
  25. Li Y., Liu F., Xu X., Zhang H., Lu M., Gao W., Yin L., Yin Z. A novel variant near LSP1P3 is associated with knee osteoarthritis in the Chinese population. Clin. Rheumatol., 2020, vol. 39, no. 8, pp. 2393–2398. DOI: 10.1007/s10067-020-04995-8
  26. Shapovalova D.A., Tyurin A.V., Khusainova R.I. Study of locuses associated with osteoarthritis on the basis of the re-sults of full genomic investigations (GWAS) among women from Bashkortostan. Terapiya, 2019, vol. 5, no. 7 (33), pp. 91–96. DOI: 10.18565/therapy.2019.7.91-96 (in Russian).
  27. Altman R.D. Criteria for classification of clinical osteoarthritis. J. Rheumatol. Suppl., 1991, vol. 27, pp. 10–12.
  28. Kellgren J.H., Lawrence J.S. Radiological assessment of osteo-arthrosis. Ann. Rheum. Dis., 1957, vol. 16, no. 4, pp. 494–502. DOI: 10.1136/ard.16.4.494
  29. Ward L.D., Kellis M. HaploReg v4: systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease. Nucleic Acids Res., 2016, vol. 44, no. D1, pp. D877–D881. DOI: 10.1093/nar/gkv1340
  30. GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science, 2020, vol. 369, no. 6509, pp. 1318–1330. DOI: 10.1126/science.aaz1776
  31. Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M.A.R., Bender D., Maller J., Sklar P. [et al.]. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet., 2007, vol. 81, no. 3, pp. 559–575. DOI: 10.1086/519795
  32. Che R., Jack J.R., Motsinger-Reif A.A., Brown C.C. An adaptive permutation approach for genome-wide association study: evaluation and recommendations for use. BioData Min., 2014, vol. 7, pp. 9. DOI: 10.1186/1756-0381-7-9
  33. Polonikov A.V., Klyosova E.Yu., Azarova I.E. Bioinformatic tools and internet resources for functional annotation of polymorphic loci detected by genome wide association studies of multifactorial diseases (review). Nauchnye rezul'taty biomed-itsinskikh issledovanii, 2021, vol. 7, no. 1, pp. 15–31. DOI: 10.18413/2658-6533-2020-7-1-0-2 (in Russian).
  34. Strebkova E.A., Alekseeva L.I. Osteoarthritis and obesity. Nauchno-prakticheskaya revmatologiya, 2015, vol. 53, no. 5, pp. 542–552. DOI: 10.14412/1995-4484-2015-542-552 (in Russian).
  35. De Boer T.N., van Spil W.E., Huisman A.M., Polak A.A., Bijlsma J.W.J., Lafeber F.P.J.G., Mastbergen S.C. Serum adipokines in osteoarthritis; comparison with controls and relationship with local parameters of synovial inflammation and cartilage damage. Osteoarthritis Cartilage, 2012, vol. 20, no. 8, pp. 846–853. DOI: 10.1016/j.joca.2012.05.002
  36. Lee N., Kim D., Kim W.-U. Role of NFAT5 in the Immune System and Pathogenesis of Autoimmune Diseases. Front. Immunol., 2019, vol. 10, pp. 270. DOI: 10.3389/fimmu.2019.00270
  37. Muraki S., Akune T., Teraguchi M., Kagotani R., Asai Y., Yoshida M., Tokimura F., Tanaka S. [et al.]. Quadriceps muscle strength, radiographic knee osteoarthritis and knee pain: the ROAD study. BMC Musculoskelet. Dis., 2015, vol. 16, pp. 305. DOI: 10.1186/s12891-015-0737-5
  38. Оiestad B.E., Juhl C.B., Eitzen I., Thorlund J.B. Knee extensor muscle weakness is a risk factor for development of knee osteoarthritis. A systematic review and meta-analysis. Osteoarthritis Cartilage, 2015, vol. 23, no. 2, pp. 171–177. DOI: 10.1016/j.joca.2014.10.008
  39. Rice S.J., Cheung K., Reynard L.N., Loughlin J. Discovery and analysis of methylation quantitative trait loci (mQTLs) mapping to novel osteoarthritis genetic risk signals. Osteoarthritis Cartilage, 2019, vol. 27, no. 10, pp. 1545–1556. DOI: 10.1016/j.joca.2019.05.017
  40. Cen L., Xing F., Xu L., Cao Y. Potential Role of Gene Regulator NFAT5 in the Pathogenesis of Diabetes Mellitus. J. Diabetes Res., 2020, vol. 2020, pp. 6927429. DOI: 10.1155/2020/6927429
  41. Lopez-Rodríguez C., Aramburu J., Rakeman A.S., Rao A. NFAT5, a constitutively nuclear NFAT protein that does not cooperate with Fos and Jun. Proc. Natl Acad. Sci. USA, 1999, vol. 96, no. 13, pp. 7214–7219. DOI: 10.1073/pnas.96.13.7214
  42. Buxadé M., Lunazzi G., Minguillón J., Iborra S., Berga-Bolaños R., Del Val M., Aramburu J., Lopez-Rodríguez C. Gene expression induced by Toll-like receptors in macrophages requires the transcription factor NFAT5. J. Exp. Med., 2012, vol. 209, no. 2, pp. 379–393. DOI: 10.1084/jem.20111569
  43. Kim N.-H., Choi S., Han E.-J., Hong B.-K., Choi S.Y., Moo Kwon H., Hwang S.-Y., Cho C.-S., Kim W.-U. The xan-thine oxidase-NFAT5 pathway regulates macrophage activation and TLR-induced inflammatory arthritis. Eur. J. Immunol., 2014, vol. 44, no. 9, pp. 2721–2736. DOI: 10.1002/eji.201343669
  44. Shirinsky V.S., Kazygasheva E.V., Shirinsky I.V. Inflammation and immunity: a role in the pathogenesis of osteoarthri-tis. Meditsinskaya immunologiya, 2019, vol. 21, no. 1, pp. 39–48. DOI: 10.15789/1563-0625-2019-1-39-48 (in Russian).
  45. Novakov V.B., Novakova O.N., Churnosov M.I. Risk factors and molecular entities of the etiopathogenesis of the knee osteoarthritis (literature review). Genii Ortopedii, 2021, vol. 27, no. 1, pp. 112–120. DOI: 10.18019/1028-4427-2021-27-1-112-120 (in Russian).
  46. Rogova L.N., Lipov D.S. The role of matrix metalloproteinases in the pathogenesis of osteoarthrost. Volgogradskii nauchno-meditsinskii zhurnal, 2018, no. 1, pp. 12–16 (in Russian).
  47. Huang Q.-Q., Pope R.M. The role of toll-like receptors in rheumatoid arthritis. Curr. Rheumatol. Rep., 2009, vol. 11, no. 5, pp. 357–364. DOI: 10.1007/s11926-009-0051-z
  48. Yoon H.-J., You S., Yoo S.-A., Kim N.-H., Moo Kwon H., Yoon C.-H., Cho C.-S., Hwang D., Kim W.-U. NFAT5 is a critical regulator of inflammatory arthritis. Arthritis Rheum., 2011, vol. 63, no. 7, pp. 1843–1852. DOI: 10.1002/art.30229
  49. Pessler F., Chen L.X., Dai L., Gomez-Vaquero C., Diaz-Torne C., Paessler M.E., Scanzello C., Cakir N. [et al.]. Schumacher A histomorphometric analysis of synovial biopsies from individuals with Gulf War Veterans Illness and joint pain compared to normal and osteoarthritis synovium. Clin. Rheumatol., 2009, vol. 27, no. 9, pp. 1127–1134. DOI: 10.1007/s10067-008-0878-0
  50. Tachmazidou I., Hatzikotoulas K., Southam L., Esparza-Gordillo J., Haberland V., Zheng J., Johnson T., Koprulu M. [et al.]. Identification of new therapeutic targets for osteoarthritis through genome-wide analyses of UK Biobank data. Nat. Genet., 2019, vol. 51, no. 2, pp. 230–236. DOI:10.1038/s41588-018-0327-1
  51. Pickrell J.K., Berisa T., Liu J.Z., Ségurel L., Tung J.Y., Hinds D.A. Detection and interpretation of shared genetic in-fluences on 42 human traits. Nat. Genet., 2016, vol. 48, no. 7, pp. 709–717. DOI: 10.1038/ng.3570
Received: 
11.07.2022
Approved: 
23.09.2022
Accepted for publication: 
01.12.2022

You are here