Specific environmental health concerns and medical challenges in Аrctic and Sub-Аrctic regions

View or download the full article: 
UDC: 
613.1, 574.24
Authors: 

J. Reis1, N.V. Zaitseva2, P. Spencer1

Organization: 

1RISE, Specialized Group on Environment and Health, Strasbourg, France
2Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, 82 Monastyrskaya Str., Perm, 614045, Russian Federation

Abstract: 

This systematic review surveys the results of studies that address the manifold influences of climate change on the health of populations in the Arctic and Sub-Arctic regions. The review includes papers available in PubMed (maintained by The United States National Library of Medicine at the National Institutes of Health), Scopus (the largest abstract and citation database of peer-reviewed literature), WoS (the abstract and citation database of peer-reviewed literature) and BVS (Virtual Health Library) that were published between 1960 to 2021.
The review covers pressing environmental, sanitary-hygienic and social issues and identifies priority risk factors for human health and that of wildlife. Global pollution and communicable diseases are shown to pose threats for indigenous people living in the Arctic. These threats are likely to be greater than those faced by populations living elsewhere in the world.

We conclude that because climate is changing faster in the Arctic than anywhere else on the planet, there is an urgent need to address the issue. Global pollution and communicable diseases pose threats to public health, including the health of indigenous people living in the Arctic and sub-Arctic regions. It is necessary to intensify cooperation among different states to reduce external influences on the Arctic environment and to prioritize public health.

Keywords: 
Arctic and Sub-Arctic regions, global climate change, public health, risk factors, sanitary-epidemiological situation, ecological situation, local and imported threats, health losses
Reis J., Zaitseva N.V., Spencer P. Specific environmental health concerns and medical challenges in Аrctic and Sub-Аrctic regions. Health Risk Analysis, 2022, no. 3, pp. 21–38. DOI: 10.21668/health.risk/2022.3.02.eng
References: 
  1. Hoberg E.P., Galbreath K.E., Cook J.A., Kutz S.J., Polley L. Northern host-parasite assemblages: history and biogeog-raphy on the borderlands of episodic climate and environmental transition. Adv. Parasitol., 2012, vol. 79, pp. 1–97. DOI: 10.1016/B978-0-12-398457-9.00001-9
  2. Fitzgerald K.T. Polar bears: the fate of an icon. Top Companion Anim. Med., 2013, vol. 28, no. 4, pp. 135–142. DOI: 10.1053/j.tcam.2013.09.007
  3. Laidre K.L., Born E.W., Atkinson S.N., Wiig Ø., Andersen L.W., Lunn N.J., Dyck M., Regehr E.V. [et al.]. Range contraction and increasing isolation of a polar bear subpopulation in an era of sea-ice loss. Ecol. Evol., 2018, vol. 8, no. 4, pp. 2062–2075. DOI: 10.1002/ece3.3809
  4. Laidre K.L., Atkinson S.N., Regehr E.V., Stern H.L., Born E.W., Wiig Ø., Lunn N.J., Dyck M. [et al.]. Transient ben-efits of climate change for a high-Arctic polar bear (Ursus maritimus) subpopulation. Glob. Chang. Biol., 2020, vol. 26, no. 11, pp. 6251–6265. DOI: 10.1111/gcb.15286
  5. Cahill J.A., Green R.E., Fulton T.L., Stiller M., Jay F., Ovsyanikov N., Salamzade R., St John J. [et al.]. Genomic evi-dence for island population conversion resolves conflicting theories of polar bear evolution. PLoS Genet., 2013, vol. 9, no. 3, pp. e1003345. DOI: 10.1371/journal.pgen.1003345
  6. Dodds K., Nuttall M. The Arctic: What Everyone Needs to Know. Oxford, Oxford University Press, 2019, 272 p. DOI: 10.1093/wentk/9780190649814.001.0001
  7. Yau A.M., Bender M.L., Robinson A., Brook E.J. Reconstructing the last interglacial at Summit, Greenland: Insights from GISP2. Proc. Natl Acad. Sci. USA, 2016, vol. 113, no. 35, pp. 9710–9715. DOI: 10.1073/pnas.1524766113
  8. Сhrist A.J., Bierman P.R., Schaefer J.M., Dahl-Jensen D., Steffensen J.P., Corbett L.B., Peteet D.M., Thomas E.K. [et al.]. A multimillion-year-old record of Greenland vegetation and glacial history preserved in sediment beneath 1.4 km of ice at Camp Century. Proc. Natl Acad. Sci. USA, 2021 vol. 118, no. 13, pp. e2021442118. DOI: 10.1073/pnas.2021442118
  9. Meinander O., Dagsson-Waldhauserova P., Amosov P., Aseyeva E., Atkins C., Baklanov A., Baldo C., Barret S. [et al.]. Newly identified climatically and environmentally significant high latitude dust sources. Atmos. Chem. Phys., 2021, vol. 22, no. 17, pp. 11889–11930. DOI: 10.5194/acp-2021-963
  10. Box J.E., Colgan W., Christensen T., Schmidt N., Lund M., Parmentier F., Brown R.D., Bhatt U.S. [et al.]. Key indica-tors of Arctic climate change: 1971–2017. Environ. Res. Lett., 2019, vol. 14, no. 4, pp. 045010. DOI: 10.1088/1748-9326/aafc1b
  11. Sonne C., Letcher R.J., Jenssen B.M., Desforges J.-P., Eulaers I., Andersen-Ranberg E., Gustavson K., Styrishave B., Dietz R. A veterinary perspective on One Health in the Arctic. Acta Vet. Scand., 2017, vol. 59, no. 1, pp. 84. DOI: 10.1186/s13028-017-0353-5
  12. Dastoor A., Wilson S.J., Travnikov O., Ryjkov A., Angot H., Christensen J.H., Steenhuisen F., Muntean M. Arctic at-mospheric mercury: Sources and changes. Sci. Total Environ., 2022, vol. 839, pp. 156213. DOI: 10.1016/j.scitotenv.2022.156213
  13. Sonne C. Health effects from long-range transported contaminants in Arctic top predators: An integrated review based on studies of polar bears and relevant model species. Environ. Int., 2010, vol. 36, no. 5, pp. 461–491. DOI: 10.1016/j.envint.2010.03.002
  14. Xie Z., Zhang P., Wu Z., Zhang S. Wei L., Mi L., Kuester A., Gandrass J. [et al.]. Legacy and emerging organic con-taminants in the polar regions. Sci. Total Environ., 2022, vol. 835, pp. 155376. DOI: 10.1016/j.scitotenv.2022.155376
  15. Hildes J.A. Health problems in the Arctic. Can. Med. Assoc. J., 1960, vol. 83, no. 24, pp. 1255–1257.
  16. Victorin K., Hogstedt C., Kyrklund T., Eriksson M. Setting Priorities for Environmental Health Risks in Sweden. In: D.J. Briggs, R. Stern, T.L. Tinker eds. Environmental Health for All. NATO Science Series, 1999, vol. 49, pp. 35–51. DOI: 10.1007/978-94-011-4740-8_3
  17. Hasnulin V.I., Gafarov V.V., Voevoda M.I., Razumov E.V., Artamonova M.V. Influence of meteorological factors in different seasons on incidence of hypertensive disease complications in Novosibirsk residents. Ekologiya cheloveka, 2015, no. 7, pp. 3–8 (in Russian).
  18. Emelina S.V., Rubinshtein K.G., Gur’yanov V.V., Perevedentsev Y.P., Ivanov A.V. Effects of short-term weather changes in Naberezhnye Chelny city on people suffering from ischemic heart disease. Russian Meteorology and Hydrology, 2015, vol. 40, no. 12, pp. 838–843. DOI: 10.3103/S1068373915120092
  19. Grigorieva E.A. Human health in extreme temperatures: forecast and results of the assessment. Gigiena i sanitariya, 2019, vol. 98, no. 11, pp. 1279–1284. DOI: 10.18821/0016-9900-2019-98-11-1279-1284 (in Russian).
  20. Grigorieva E.A. Climatic discomfort and morbidity at the Russian Far East. Regional’nye problemy, 2018, vol. 21, no. 2, pp. 105–112. DOI: 10.31433/1605-220X-2018-21-2-105-112 (in Russian).
  21. Belyaeva V.A. Influence exerted by risk factors of space and erath weather on frequency of emergency calls from pa-tients with acute cerebral circulation disorders. Health Risk Analysis, 2017, no. 4, pp. 76–82. DOI: 10.21668/health.risk/2017.4.08.eng
  22. Galichiy V.A. Seasonal factor in manifestations of cardiovascular pathologies. Aviakosmicheskaya i ekologicheskaya meditsina, 2017, vol. 51, no. 1, pp. 7–17. DOI: 10.21687/0233-528X-2017-51-1-7-17 (in Russian).
  23. Grigoryeva E.A., Kiryantseva L.P. Cardiorespiratory morbidity caused by seasonal weather changes and measures for its prevention. Zdorov'e naseleniya i sreda obitaniya – ZNiSO, 2016, no. 2 (275), pp. 7–10 (in Russian).
  24. Hasnulin V.I., Hasnulin P.V. Modern concepts of the mechanisms forming northern stress in humans in high latitudes. Ekologiya cheloveka, 2012, no. 1, pp. 3–11 (in Russian).
  25. Petrov V.N. Features of influence of oxygen' partial density gradient in the air on the health status of populations living in the arctic zone of the Russian Federation. Vestnik Kol'skogo nauchnogo tsentra RAN, 2015, № 3 (22), pp. 82–92 (in Russian).
  26. Tereshchenko P.S., Petrov V.N. Probable cause of morbidity of the population in the areas of the Arctic. Trudy Kol'skogo nauchnogo tsentra RAN, 2018, vol. 9, no. 2–13, pp. 145–150. DOI: 10.25702/KSC.2307-5252.2018.9.2.145-150 (in Russian).
  27. Gapon L.I., Shurkevich N.P., Vetoshkin A.S., Gubin D.G. Arterial'naya gipertoniya v usloviyakh Tyumenskogo Sev-era. Desinkhronoz i giperreaktivnost' organizma kak faktor formirovaniya bolezni [Arterial hypertension in the conditions of the Tyumen North. Desynchronosis and hyperreactivity of the body as a factor in the formation of the disease]. Moscow, Med-itsinskaya kniga, 2009, 208 p. (in Russian).
  28. Zapesochnaya I.L., Avtandilov A.G. Features of arterial hypertension course in north regions of the country. Klinicheskaya meditsina, 2008, vol. 86, no. 5, pp. 42–44 (in Russian).
  29. Hasnullin V.I., Voevoda M.I., Hasnulin P.V., Artamonova O.G. Modern approach to arterial hypertension in the circumpolar and arctic regions. Literature review. Ekologiya cheloveka, 2016, no. 3, pp. 43–51. DOI: 10.33396/1728-0869-2016-3-43-51 (in Russian).
  30. Buganov A.A. Voprosy profilakticheskoi meditsiny v Yamal'skom regione [Issues of preventive medicine in the Yamal region]. Nadym, 2002, 417 p. (in Russian).
  31. Polikarpov L.S., Yaskevich R.A., Derevyannykh E.V., Khamnagadaev I.I., Gogolashvili N.G. Ishemicheskaya bolezn' serdtsa, osobennosti klinicheskogo techeniya v usloviyakh Krainego Severa [Ischemic heart disease, features of the clinical course in the conditions of the Far North]. Krasnoyarsk, KrasGMU Publ., 2011, 310 p. (in Russian).
  32. Khasnulin V.I., Shurgaya A.M., Khasnulina A.V., Sevost'yanova E.V. Kardiometeopatii na Severe [Cardiometeopathies in the North]. Novosibirsk, SO RAMN Publ., 2000, 222 p. (in Russian).
  33. Popova O.N., Glebova N.A., Gudkov A.B. Compensatory-adaptive change of external respiration system in far north residents. Ekologiya cheloveka, 2008, no. 10, pp. 31–33 (in Russian).
  34. Dubinin K.N., Tipisova E.V. Role of hormones of the hypophysis – thyroid gland system in providing adaptable po-tential at women of Far North. Izvestiya Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk, 2012, vol. 14, no. 5–2, pp. 330–332 (in Russian).
  35. Tipisova E.V., Elfimova A.E., Gorenko I.N., Popkova V.A. Endocrine profile of the male population in Russia de-pending on the geographic latitude of occupation. Ekologiya cheloveka, 2016, no. 2, pp. 36–41. DOI: 10.33396/1728-0869-2016-2-36-41 (in Russian).
  36. Enikeev A.V., Shumilov O.I., Kasatkina E.A., Karelin A.O., Nikanov A.N. Seasonal changes of functional state of organisms of children from Kola Polar region. Ekologiya cheloveka, 2007, no. 5, pp. 23–28 (in Russian).
  37. Shcherbina Yu.F., Popova O.N. Characteristic of dynamic lung volumes, spare capacities and ventilation effectiveness in far north residents during contrastive year seasons. Ekologiya cheloveka, 2012, no. 12, pp. 10–15 (in Russian).
  38. Gudkov A.B., Shcherbina Yu.F., Popova O.N. Changes in lung volumes in far north residents in polar day and polar night periods. Ekologiya cheloveka, 2013, no. 4, pp. 3–7 (in Russian).
  39. Chesnokova V.N. Sezonnye osobennosti organizatsii sistemnoi gemodinamiki u yunoshei Severnogo regiona [Seasonal features of the organization of systemic hemodynamics in young men of the Northern region]. Vestnik Pomorskogo universiteta. Seriya: Estestvennye nauki, 2009, no. 1, pp. 20–27 (in Russian).
  40. Yurjev Yu.Yu., Tipisova E.V. Age aspects of endocrine status in men permanent and newly arrived residents of city of Arkhangelsk. Ekologiya cheloveka, 2009, no. 7, pp. 15–19 (in Russian).
  41. Kauppila A., Kivelä A., Pacarinen A., Vaccuri O. Inverse Seasonal Relationship Between Melatonin and Ovarian Ac-tivity in Humans in a Region With a Strong Seasonal Contrast in Luminosity. J. Clin. Endocrinol. Metab., 2016, vol. 65, no. 5, pp. 823–828. DOI: 10.1210/jcem-65-5-823
  42. Kipriyanova K.E., Tipisova E.V., Gorenko I.N. Endocrine aspects of reproductive function in men (aged 22–35 years) – residents of the Far North and Arkhangelsk. Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya, 2017, no. 40, pp. 150–162 (in Russian).
  43. Varentsova I.A., Chesnokova V.N., Sokolova L.V. Sezonnoe izmenenie sostoyaniya studentov s raznym tipom vege-tativnoi regulyatsii serdechnogo ritma [Seasonal change in the state of students with different types of vegetative regulation of the heart rate]. Ekologiya cheloveka, 2011, no. 2, pp. 47–52 (in Russian).
  44. Sawatzky A., Cunsolo A., Jones-Bitton A., Middleton J., Harper S.L. Responding to climate and environmental change impacts on human health via integrated surveillance in the Circumpolar North: a systematic realist review. Int. J. Environ. Res. Public Health, 2018, vol. 15, no. 12, pp. 2706. DOI: 10.3390/ijerph15122706
  45. Durkalec A., Furgal C., Skinner M.W., Sheldon T. Investigating environmental determinants of injury and trauma in the Canadian north. Int. J. Environ. Res. Public Health, 2014, vol. 11, no. 2, pp. 1536–1548. DOI: 10.3390/ijerph110201536
  46. Sharma S., Blagrave K., Watson S.R., O'Reilly C.M., Batt R., Magnuson J.J., Clemens T., Denfeld B.A. [et al.]. In-creased winter drownings in ice-covered regions with warmer winters. PLoS One, 2020, vol. 15, no. 11, pp. e0241222. DOI: 10.1371/journal.pone.0241222
  47. Hedlund C., Blomstedt Y., Schumann B. Association of climatic factors with infectious diseases in the Arctic and subarctic region – a systematic review. Glob. Health Action, 2014, vol. 7, pp. 24161. DOI: 10.3402/gha.v7.24161
  48. Caminade C., McIntyre K.M., Jones A.E. Impact of recent and future climate change on vector-borne diseases. Ann. NY Acad. Sci., 2019, vol. 1436, no. 1, pp. 157–173. DOI: 10.1111/nyas.13950
  49. Ma Y., Destouni G., Kalantari Z., Omazic A., Evengård B., Berggren C., Thierfelder T. Linking climate and infectious disease trends in the Northern/Arctic Region. Sci. Rep., 2021, vol. 11, no. 1, pp. 20678. DOI: 10.1038/s41598-021-00167-z
  50. Robinson S.J., Samuel M.D., O'Rourke K.I., Johnson C.J. The role of genetics in chronic wasting disease of North American cervids. Prion, 2012, vol. 6, no. 2, pp. 153–162. DOI: 10.4161/pri.19640
  51. Tranulis M.A., Gavier-Widén D., Våge J., Nöremark M., Korpenfelt S.L., Hautaniemi M., Pirisinu L., Nonno R., Benestad S.L. Chronic wasting disease in Europe: new strains on the horizon. Acta Vet. Scand., 2021, vol. 63, no. 1, pp. 48. DOI: 10.1186/s13028-021-00606-x
  52. Ruscio B.A., Brubaker M., Glasser J., Hueston W., Hennessy T.W. One Health – a strategy for resilience in a changing arctic. Int. J. Circumpolar Health, 2015, vol. 74, pp. 27913. DOI: 10.3402/ijch.v74.27913
  53. Miner K.R., D’Andrilli J., Mackelprang R., Edwards A., Malaska M.J., Waldrop M.P., Miller C.E. Emergent biogeo-chemical risks from Arctic permafrost degradation. Nat. Clim. Chang., 2021, vol. 11, pp. 809–819.
  54. Abramov A., Vishnivetskaya T., Rivkina E. Are permafrost microorganisms as old as permafrost? FEMS Microbiol. Ecol., 2021, vol. 97, no. 2, pp. fiaa260. DOI: 10.1093/femsec/fiaa260
  55. Jordan D., Tumpey T., Jester B. The Deadliest Flu: The Complete Story of the Discovery and Reconstruction of the 1918 Pandemic Virus. CDC. Available at: https://www.cdc.gov/flu/pandemic-resources/reconstruction-1918-virus.html (19.08.2022).
  56. Taubenberger J.K., Reid A.H., Krafft A.E., Bijwaard K.E., Fanning T.G. Initial genetic characterization of the 1918 "Spanish" influenza virus. Science, 1997, vol. 275, no. 5307, pp. 1793–1796. DOI: 10.1126/science.275.5307.1793
  57. Tumpey T.M., Basler C.F., Aguilar P.V., Zeng H., Solórzano A., Swayne D.E., Cox N.J., Katz J.M. [et al.]. Charac-terization of the reconstructed 1918 Spanish influenza pandemic virus. Science, 2005, vol. 310, no. 5745, pp. 77–80. DOI: 10.1126/science.1119392
  58. Holmes E.C. Freezing viruses in time. Proc. Natl Acad. Sci. USA, 2014, vol. 111, no. 47, pp. 16643–16644. DOI: 10.1073/pnas.1419827111
  59. Ng T.F., Chen L.F., Zhou Y., Shapiro B., Stiller M., Heintzman P.D., Varsani A., Kondov N.O. [et al.]. Preservation of viral genomes in 700-y-old caribou feces from a subarctic ice patch. Proc. Natl Acad. Sci. USA, 2014, vol. 111, no. 47, pp. 16842–16847. DOI: 10.1073/pnas.1410429111
  60. Legendre M., Bartoli J., Shmakova L., Jeudy S., Labadie K., Adrait A., Lescot M., Poirot O. [et al.]. Thirty-thousand-year-old distant relative of giant icosahedral DNA viruses with a pandoravirus morphology. Proc. Natl Acad. Sci. USA, 2014, vol. 111, no. 11, pp. 4274–4279. DOI: 10.1073/pnas.1320670111
  61. Ezhova E., Orlov D., Suhonen E., Kaverin D., Mahura A., Gennadinik V., Drozdov D., Lappalainen H.K. [et al.]. Climatic Factors Influencing the Anthrax Outbreak of 2016 in Siberia, Russia. Ecohealth, 2021, vol. 18, no. 2, pp. 217–228. DOI: 10.1007/s10393-021-01549-5
  62. Bonefeld-Jorgensen E.C. Biomonitoring in Greenland: human biomarkers of exposure and effects – a short review. Rural Remote Health, 2010, vol. 10, no. 2, pp. 1362.
  63. Koldkjaer O.G., Wermuth L., Bjerregaard P. Parkinson’s disease among Inuit in Greenland: organochlorines as risk factors. Int. J. Circumpolar Health, 2004, vol. 63, suppl. 2, pp. 366–368. DOI: 10.3402/ijch.v63i0.17937
  64. Wermuth L., Bünger N., von Weitzel-Mudersback P., Pakkenberg H., Jeune B. Clinical characteristics of Parkinson’s disease among Inuit in Greenland and inhabitants of the Faroe Islands and Als (Denmark). Mov. Disord., 2004, vol. 19, no. 7, pp. 821–824. DOI: 10.1002/mds.20058
  65. Bank-Nielsen P.I., Long M., Bonefeld-Jørgensen E.C. Pregnant Inuit Women’s Exposure to Metals and Association with Fetal Growth Outcomes: ACCEPT 2010–2015. Int. J. Environ. Res. Public Health, 2019, vol. 16, no. 7, pp. 1171. DOI: 10.3390/ijerph16071171
  66. Weihe P., Hansen J.C., Murata K., Debes F., Jørgensen P.J., Steuerwald U., White R.F., Grandjean P. Neurobehavioral performance of Inuit children with increased prenatal exposure to methylmercury. Int. J. Circumpolar Health, 2002, vol. 61, no. 1, pp. 41–49. DOI: 10.3402/ijch.v61i1.17404
  67. Harper S.L., Wright C., Masina S., Coggins S. Climate change, water, and human health research in the Arctic. Water Security, 2020, vol. 10, pp. 100062. DOI: 10.1016/j.wasec.2020.100062
  68. Andronov S., Lobanov A., Popov A., Luo Y., Shaduyko O., Fesyun A., Lobanova L., Bogdanova E., Kobel'kova I. Changing diets and traditional lifestyle of Siberian Arctic Indigenous Peoples and effects on health and well-being. Ambio, 2021, vol. 50, no. 11, pp. 2060–2071. DOI: 10.1007/s13280-020-01387-9
  69. Bogdanova E., Andronov S., Soromotin A., Detter G., Sizov O., Hossain K., Raheem D., Lobanov A. The Impact of Climate Change on the Food (In)security of the Siberian Indigenous Peoples in the Arctic: Environmental and Health Risks. Sustainability, 2021, vol. 13, no. 5, pp. 2561. DOI: 10.3390/su13052561
  70. Young T.K., Revich B., Soininen L. Suicide in circumpolar regions: an introduction and overview. Int. J. Circumpolar Health, 2015, vol. 74, pp. 27349. DOI: 10.3402/ijch.v74.27349
Received: 
17.07.2022
Approved: 
25.09.2022
Accepted for publication: 
27.09.2022

You are here