Effects of genetic polymorphisms of GSTM1, GSTT1, and GSTP1 genes on blood metal levels in non-ferrous metal alloy smelter operators

View or download the full article: 
UDC: 
577: 575: 614.8.086 (470.54)
Authors: 

D.R. Shaikhova, A.M. Amromina, I.A. Bereza, A.S. Shastin, V.G. Gazimova, M.P. Sutunkova, V.B. Gurvich

Organization: 

Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popova Str., Ekaterinburg, 620014, Russian Federation

Abstract: 

Heavy metal ions are known to induce generation of a large number of reactive oxygen species (ROS). Glutathione S-transferases (GSTs) play an important role in adaptation and response to oxidative stress. GSTM1, GSTT1, and GSTP1 genes have numerous described polymorphisms, the most significant being GSTM1, GSTT1, and GSTP1 Ile105Val deletion ones.

Our objective was to study the relationship between the genetic polymorphism of GSTM1, GSTT1, GSTP1 genes and blood levels of metals in smelter operators engaged in crude lead refining.

We examined 55 male lead-refining furnace operators working at a non-ferrous metal alloy plant. Blood metal concentrations were measured by inductively coupled plasma mass spectrometry. GSTM1 and GSTT1 deletion polymorphisms were determined using real-time SYBR Green qPCR and that of GSTP1 Ile105Val – using a commercial SNP Screening Kit. Statistical data processing was carried out using the Mann – Whitney U-test.

Blood levels of industry-specific metals were not statistically different between the workers with GSTT1 and GSTP1 genotypes. We established, however, that men with the null genotype of GSTM1 had significantly higher blood arsenic levels.

Our findings indicate that a high blood arsenic level associated with occupational exposure may be attributed to the GSTM1 null genotype. This observation can be used to identify the most vulnerable groups of individuals at risk of overexposure to arsenic.

Keywords: 
xenobiotics, GSTM1, GSTT1, GSTP1, glutathione S-transferases, heavy metals, arsenic, polymorphisms
Shaikhova D.R., Amromina A.M., Bereza I.A., Shastin A.S., Gazimova V.G., Sutunkova M.P., Gurvich V.B. Effects of genetic polymorphisms of GSTM1, GSTT1 and GSTP1 genes on blood metal levels in non-ferrous metal alloy smelter operators. Health Risk Analysis, 2022, no. 3, pp. 176–181. DOI: 10.21668/health.risk/2022.3.17.eng
References: 
  1. Ercal N., Gurer-Orhan H., Aykin-Burns N. Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Curr. Top. Med. Chem., 2001, vol. 1, no. 6, pp. 529–539. DOI: 10.2174/1568026013394831
  2. Flora S.J.S., Mittal M., Mehta A. Heavy metal induced oxidative stress and its possible reversal by chelation therapy. Indian J. Med. Res., 2008, vol. 128, no. 4, pp. 501–523.
  3. Nourozi M.A., Neghab M., Bazzaz J.T., Nejat S., Mansoori Y., Shahtaheri S.J. Association between polymorphism of GSTP1, GSTT1, GSTM1 and CYP2E1 genes and susceptibility to benzene-induced hematotoxicity. Arch. Toxicol., 2018, vol. 92, no. 6, pp. 1983–1990. DOI: 10.1007/s00204-017-2104-9
  4. Klusek J., Głuszek S., Klusek J. GST gene polymorphisms and the risk of colorectal cancer development. Contemp. Oncol. (Pozn.), 2014, vol. 18, no. 4, pp. 219–221. DOI: 10.5114/wo.2014.41388
  5. Farmohammadi A., Arab-Yarmohammadi V., Ramzanpour R. Association analysis of rs1695 and rs1138272 variations in GSTP1 gene and breast cancer susceptibility. Asian Pac. J. Cancer Prev., 2020, vol. 21, no. 4, pp. 1167–1172.
  6. Sirivarasai J., Wananukul W., Kaojarern S., Chanprasertyothin S., Thongmung N., Ratanachaiwong W., Sura T., Sritara P. Association between inflammatory marker, environmental lead exposure, and glutathione S-transferase gene. Biomed Res. Int., 2013, vol. 2013, pp. 474963. DOI: 10.1155/2013/474963
  7. Shaikhova D.R., Amromina A.M., Sitnikov I.A., Sutunkova M.P., Gurvich V.B., Astakhova S.G. Features of GSTM1, GSTT1 and GSTP1 Genetic Polymorphism in Nizhny Tagil Metallurgical Plant Workers with Cardiovascular Diseases. Zdorov'e naseleniya i sreda obitaniya – ZNiSO, 2021, vol. 1, no. 12, pp. 36–40. DOI: 2219-5238/2021-29-12-36-40 (in Russian).
  8. Naranmandura H., Suzuki N., Suzuki K.T. Trivalent arsenicals are bound to proteins during reductive methylation. Chem. Res. Toxicol., 2006, vol. 19, no. 8, pp. 1010–1018. DOI: 10.1021/tx060053f
  9. Hayakawa T., Kobayashi Y., Cui X., Hirano S. A new metabolic pathway of arsenite: arsenic-glutathione complexes are substrates for human arsenic methyltransferase Cyt19. Arch. Toxicol., 2005, vol 79, no. 4, pp. 183–191. DOI: 10.1007/s00204-004-0620-x
  10. Vahter M. Mechanisms of arsenic biotransformation. Toxicology, 2002, vol. 181–182, pp. 211–217. DOI: 10.1016/s0300-483x(02)00285-8
  11. Tseng C.-H. Arsenic methylation, urinary arsenic metabolites and human diseases: current perspective. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev., 2007, vol. 25, no. 1, pp. 1–22. DOI: 10.1080/10590500701201695
  12. Schuliga M., Chouchane S., Snow E.T. Upregulation of glutathione-related genes and enzyme activities in cultured human cells by sublethal concentrations of inorganic arsenic. Toxicol. Sci., 2002, vol. 70, no. 2, pp. 183–192. DOI: 10.1093/toxsci/70.2.183
  13. Quiñones L., Lee K., Varela F.N., Escala M., García K., Godoy L., Castro A., Soto J. [et al.]. Cancer pharmacogenetics: study of genetically determined variations on cancer susceptibility due to xenobiotic exposure. Rev. Med. Chil., 2006, vol. 134, no. 4, pp. 499–515. DOI: 10.4067/s0034-98872006000400015 (in Spanish).
  14. Agusa T., Fujihara J., Takeshita H., Iwata H. Individual variations in inorganic arsenic metabolism associated with AS3MT genetic polymorphisms. Int. J. Mol. Sci., 2011, vol. 12, no. 4, pp. 2351–2382. DOI: 10.3390/ijms12042351
  15. Janasik B., Reszka E., Stanislawska M., Wieczorek E., Fendler W., Wasowicz W. Biological monitoring and the in-fluence of genetic polymorphism of As3MT and GSTs on distribution of urinary arsenic species in occupational exposure workers. Int. Arch. Occup. Environ. Health, 2015, vol. 88, no. 6, pp. 807–818. DOI: 10.1007/s00420-014-1009-7
  16. De Chaudhuri S., Ghosh P., Sarma N., Majumdar P., Sau T.J., Basu S., Roychoudhury S., Ray K., Giri A.K. Genetic variants associated with arsenic susceptibility: study of purine nucleoside phosphorylase, arsenic (+3) methyltransferase, and glutathione S-transferase omega genes. Environ. Health Perspect., 2008, vol. 116, no. 4, pp. 501–505. DOI: 10.1289/ehp.10581
  17. Zhong S., Zhou S.-F., Chen X., Chan S.Y., Chan E., Ng K.-Y., Duan W., Huang M. Relationship between genotype and enzyme activity of glutathione S-transferases M1 and P1 in Chinese. Eur. J. Pharm. Sci., 2006, vol. 28, no. 1–2, pp. 77–85. DOI: 10.1016/j.ejps.2006.01.002
  18. Agusa T., Iwata H., Fujihara J., Kunito T., Takeshita H., Minh T.B., Trang P.T.K., Viet P.H., Tanabe S. Genetic pol-ymorphisms in glutathione S-transferase (GST) superfamily and arsenic metabolism in residents of the Red River Delta, Vietnam. Toxicol. Appl. Pharmacol., 2010, vol. 242, no. 3, pp. 352–362. DOI: 10.1016/j.taap.2009.11.007
  19. Ramprasath T., Murugan P.S., Prabakaran A.D., Gomathi P., Rathinavel A., Selvam G.S. Potential risk modifications of GSTT1, GSTM1 and GSTP1 (glutathione-S-transferases) variants and their association to CAD in patients with type-2 diabetes. Biochem. Biophys. Res. Commun., 2011, vol. 407, no. 1, pp. 49–53. DOI: 10.1016/j.bbrc.2011.02.097
  20. González-Martínez F., Sánchez-Rodas D., Varela N.M., Sandoval C.A., Quiñones L.A., Johnson-Restrepo B. As3MT and GST Polymorphisms Influencing Arsenic Metabolism in Human Exposure to Drinking Groundwater. Int. J. Mol. Sci., 2020, vol. 21, no. 14, pp. 4832. DOI: 10.3390/ijms21144832
Received: 
04.08.2022
Approved: 
01.09.2022
Accepted for publication: 
21.09.2022

You are here