On harmonization of health risk indicators caused by ionizing radiation exposure and other harmful factors based on DALY estimates

View or download the full article: 

L.V. Repin, R.R. Akhmatdinov, A.M. Biblin, V.S. Repin


St. Petersburg Research Institute of Radiation Hygiene after Professor P.V. Ramzaev, 8 Mira Str., St. Petersburg, 197101, Russian Federation


Radiation detriment is a basic measure which is currently applied to assess health risks caused by exposure to ionizing radiation. This concept was developed by the International Commission on Radiological Protection (ICRP) more than 30 years ago; it has both certain advantages and drawbacks that limit the scope of its possible application. A certain drawback is that this value is used exclusively to assess effects produced on health by radiation thus making it ineligible for correct comparative analysis of different risks. This review focuses on contemporary scientific papers devoted to various approaches to calculating radiation detriment. There is also an attempt to analyze whether it is possible to apply the WHO methodology for assessing burden of disease as a basis for calculating universal risk rates taking into account effects produced by exposure to harmful environmental factors on population health. A possibility to use DALY (disability-adjusted life years) estimate is considered as one of possible approaches to harmonizing health risk assessment methodologies. DALY is among estimates that are frequently used to assess population health when solving various tasks in public healthcare. The review dwells on discussing whether it is advisable and feasible to gradually change a methodology for calculating radiation detriment in order to use the effective dose as a measure of health risk more correctly.

radiation risk, radiation detriment, DALY, public health, health risk, global burden of disease, disease severity, mortality, morbidity
Repin L.V., Akhmatdinov R.R., Biblin A.M., Repin V.S. On harmonization of health risk indicators caused by ionizing radiation exposure and other harmful factors based on DALY estimates. Health Risk Analysis, 2022, no. 1, pp. 170–183. DOI: 10.21668/health.risk/2022.1.18.eng
  1. Demin V.F., Zakharchenko I.E. Risk vozdeistviya ioniziruyushchego izlucheniya i drugikh vrednykh faktorov na zdo-rov'e cheloveka: metody otsenki i prakticheskoe primenenie [The risk of exposure to ionizing radiation and other harmful factors for human health: assessment methods and practical application]. Radiatsionnaya biologiya. Radioekologiya, 2012, vol. 52, no. 1, pp. 77–89 (in Russian).
  2. Korenkov I.P., Demin V.F., Soloviev V.Yu. Problems of the establishment of dose – effect relationship for risk as-sessment under exposure to ionizing radiation and harmful chemical substances. Gigiena i sanitariya, 2019, vol. 98, no. 7, pp. 687–700. DOI: 10.18821/0016-9900-2019-98-7-697-700 (in Russian).
  3. Cléro E., Bisson M., Nathalie V., Blanchardon E., Thybaud E., Billarand Y. Cancer risk from chronic exposures to chemicals and radiation: a comparison of the toxicological reference value with the radiation detriment. Radiat. Environ. Biophys., 2020, vol. 60, no. 4, pp. 531–547. DOI: 10.1007/s00411-021-00938-2
  4. Cléro E., Vaillant L., Hamada N., Zhang W., Preston D., Laurier D., Ban N. History of radiation detriment and its calculation methodology used in ICRP Publication 103. J. Radiol. Prot., 2019, vol. 39, no. 3, pp. R19–R35. DOI: 10.1088/1361-6498/ab294a
  5. Zhang W., Laurier D., Cléro E., Hamada N., Preston D., Vaillant L., Ban N. Sensitivity analysis of parameters and methodological choices used in calculation of radiation detriment for solid cancer. Int. J. Radiat. Biol., 2021, vol. 96, no. 5, pp. 596–605. DOI: 10.1080/09553002.2020.1708499
  6. Breckow J., Emami S., Amalhaf S., Beshgard A., Buermeyer J., Spruck K. Impact of updating the non-radiation parame-ters in the ICRP 103 detriment model. Radiat. Environ. Biophys., 2021., vol. 57, pp. 89–98. DOI: 10.1007/s00411-018-0731-z
  7. Kobyakova O.S., Deyev I.A., Boikov V.A., Milkevich M.N., Kulikov E.S., Naumov A.O., Golubeva A.A., Shibalkov I.P. Possible application of DALY to health assessment of population in Russia. Sotsial'nye aspekty zdorov'ya naseleniya, 2015, no. 2. Available at: http://vestnik.mednet.ru/content/view/660/30/ (12.12.2021) (in Russian).
  8. Starodubov V.I., Marczak L.B , Varavikova E., Bikbov B., Ermakov S.P., Gall J., Glenn S.D., Griswold M. [et al.]. The burden of disease in Russia from 1980 to 2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet, 2018. vol. 392, no. 10153, pp. 1138–1146. DOI: 10.1016/S0140-6736(18)31485-5
  9. Publikatsiya 26 MKRZ. Radiatsionnaya zashchita [ICRP Publication 26. Recommendations of the ICRP]. Trudy MKRZ. Moscow, Atomizdat, 1978, 88 p. (in Russian).
  10. Publikatsiya 60 MKRZ. Radiatsionnaya bezopasnost'. Rekomendatsii Mezhdunarodnoi komissii po radiologicheskoi zashchite 1990 goda. Chast’ 2 [ICRP Publication 60. Radiation protection. 1990 Recommendations of the International Com-mission on Radiological Protection. Part 2]. In: I.B. Keirim-Markus ed. Trudy MKRZ. Moscow, Energoatomizdat, 1994, 208 p. (in Russian).
  11. Preston D.L., Shimizu Y., Pierce D.A., Suyama A., Mabuchi K. Studies of mortality of atomic bomb survivors. Report 13: solid cancer and noncancer disease mortality: 1950–1997. Radiat. Res., 2012. vol. 178, no. 2, pp. AV146–AV172. DOI: 10.1667/rrav12.1
  12. Ozasa K., Shimizu Y., Suyama A., Kasagi F., Soda M., Grant E.J., Sakata R., Sugiyama H., Kodama K. Studies of the mortality of atomic bomb survivors, Report 14, 1950–2003: an overview of cancer and noncancer diseases. Radiat. Res., 2012, vol. 177, no. 3, pp. 229–243. DOI: 10.1667/rr2629.1
  13. ICRP Publication 60. Radiation protection. 1990 Recommendations of the International Commission on Radiological Protection. Part 2. In: H. Smith ed. Annals of the ICRP, vol. 21, no. 1–3. Oxford, Pergamon Press, 1991, 211 p.
  14. ICRP Publication 103. The 2007 Recommendations of the International Commission on Radiological Protection. In: J. Valentin ed. Annals of the ICRP, 2007, vol. 37, no. 2–4, 339 p.
  15. Repin L.V. On the use of detriment parameters for the quantitative evaluation of radiation exposure consequences. Ra-diatsionnaya gigiena, 2011, vol. 4, no. 1, pp. 35–37 (in Russian).
  16. Publikatsiya 103 MKRZ. Rekomendatsii 2007 goda Mezhdunarodnoi komissii po radiatsionnoi zashchite [ICRP Pub-lication 103. The 2007 Recommendations of the International Commission on Radiological Protection]. In: M.F. Kiselev, N.K. Shandala eds. Trudy MKRZ. Moscow, OOO PKF “Alana”, 2009, 344 p. (in Russian).
  17. EPA 402-R-11-001. EPA Radiogenic Cancer Risk Models and Projections for the U.S. Population. U.S. Environ¬mental Protection Agency, Washington, D.C., 2011, 175 p.
  18. UNSCEAR 2006 Report. Effects of ionizing radiation. Vol. 2. New York, United Nations Publ., 2009, 338 p.
  19. Lajoie J. Understanding the Measurement of Global Burden of Disease. National Collaborating Centre for Infectious Diseases, 2015, 22 p. Available at: https://nccid.ca/wp-content/uploads/sites/2/2015/03/Global_Burden_Diseas... (20.12.2021).
  20. Murray C.J.L., Salomon J.A., Mathers C. A critical examination of summary measures of population health. Bull. World Health Organ., 2000, vol. 78, no. 8, pp. 981–994.
  21. Gold M.R., Stevenson D., Fryback D.G. HALYs and QALYs and DALYs, Oh My: similarities and differences in sum-mary measures of population health. Annu. Rev. Public Health, 2002, vol. 23, no. 1, pp. 115–134. DOI: 10.1146/annurev.publ-health.23.100901.140513
  22. Sassi F. Calculating QALYs, comparing QALY and DALY calculations. Health Policy Plan., 2006, vol. 21, no. 5, pp. 402–408. DOI: 10.1093/heapol/czl018
  23. Pasport natsional'nogo proekta «Zdravookhranenie» [The profile of the “Healthcare” national project]. Available at: http://static.government.ru/media/files/gWYJ4OsAhPOweWaJk1prKDEpregEcduI... (12.12.2021) (in Russian).
  24. Harris E.C., Palmer K.T., Cox V., Darnton A., Osman J., Coggon D. Trends in mortality from occupational hazards among men in England and Wales during 1979–2010. Occup. Environ. Med., 2016, vol. 73, no. 6, pp. 385–393. DOI: 10.1136/oemed-2015-103336
  25. Chen Y.-H., Glymour M., Riley A., Balmes J., Duchowny K., Harrison R., Matthay E., Bibbins-Domingo K. Excess mortality associated with the COVID-19 pandemic among Californians 18–65 years of age, by occupational sector and occupation: March through November 2020. PLoS One, 2021, vol. 16, no. 6, pp. e0252454. DOI: 10.1371/journal.pone.0252454
  26. Popova A.Yu. Working conditions and occupational morbidity in the Russian Federation. Meditsina truda i ekologiya cheloveka, 2015, no. 3, pp. 7–13 (in Russian).
  27. Onishchenko G.G., Popova A.U., Zaitseva N.V., May I.V., Shur P.Z. Health risk analysis in the tasks of improving sanitary and epidemiological surveillance in the Russian Federation. Health Risk Analysis, 2014, no. 2, pp. 4–13. DOI: 10.21668/health.risk/2014.2.01.eng
  28. EPA 100-B-00-002. Risk Characterization: Science Policy Council Handbook. U.S. Environmental Protection Agency. Washington, DC, 2000, 189 p.
  29. Thacker S.B., Stroup D.F., Carande-Kulis V., Marks J.S., Roy K., Gerberding J.L. Measuring the public’s health. Public Health Rep., 2006, vol. 121, no. 1, pp. 14–22. DOI: 10.1177/003335490612100107
  30. Salomon J.A. Disability-Adjusted Life Years. Encyclopedia of Health Economics. Elsevier, 2014, pp. 200–203. DOI: 10.1016/b978-0-12-375678-7.00511-3
  31. Mathers C.D. History of global burden of disease assessment at the World Health Organization. Arch. Public Health, 2020, vol. 78, pp. 77. DOI: 10.1186/s13690-020-00458-3
  32. Ustün T.B., Chatterj S., Bickenbach J., Kostanjsek N., Schneider M. The International Classification of Functioning, Disability and Health: a new tool for understanding disability and health. Disabil. Rehabil., 2003, vol. 25, no. 11-12, pp. 565–571. DOI: 10.1080/0963828031000137063
  33. The Global Burden of Disease concept. WHO. Available at: https://www.who.int/quantifying_ehim¬pacts/publi-cations/en/9241546204chap3.pdf (12.12.2021).
  34. Murray C.J.L., Lopez A.D., Mathers C.D., Stein C. The Global Burden of Disease 2000 project: aims, methods and data sources. WHO, 2001, 57 p. Available at: https://www.who.int/healthinfo/paper36.pdf (12.12.2021).
  35. Handbook of disease burdens and quality of life measures. In: V.R. Preedy, R.R. Watson eds. New York, Springer, 2010, 4446 p. DOI: 10.1007/978-0-387-78665-0
  36. Ruan X., Li Y., Jin X., Deng P., Xu J., Li N., Li X., Liu Y. Health-adjusted life expectancy (HALE) in Chongqing, China, 2017: An artificial intelligence and big data method estimating the burden of disease at city level. Lancet Reg. Health West. Pac., 2021, vol. 9, pp. 100110. DOI: 10.1016/j.lanwpc.2021.100110
  37. Lee J.Y., Ock M., Kim S.H., Go D.S., Kim H.J., Jo M.W. Health-Adjusted Life Expectancy (HALE) in Korea: 2005–2011. J. Korean Med. Sci., 2016, vol. 31, suppl. 2, pp. 139–145. DOI: 10.3346/jkms.2016.31.S2.S139
  38. Chen A., Jacobsen K.H., Deshmukh A.A., Cantor S.B. The evolution of the disability-adjusted life year (DALY). Socio-Econ. Plan. Sci., 2015, vol. 49, pp. 10–15. DOI: 10.1016/j.seps.2014.12.002
  39. The global burden of disease: a comprehensive assessment of mortality and disability from diseases, injuries, and risk factors in 1990 and projected to 2020: summary. In: C.J.L. Murray, A.D. Lopez eds. WHO. Boston, Harvard School of Public Health Publ., 1996, 41 p.
  40. Ban N., Clero E., Vaillant L., Zhang W., Hamada N., Preston D., Laurier D. Possible Improvements of Methodology for Calculating Radiation Detriment in the Future. ICRP. Available at: https://icrp.org/admin/Live%20Sessions/SLIDES_2-2_NobuhikoBan.pdf (12.12.2021).
  41. Gorski A.I., Chekin S.Yu., Maksioutov M.A., Menyajlo A.N., Korelo A.M., Tumanov K.A., Zelenskaya N.S., Lash-kova O.E., Ivanov V.K. Transfer of ICRP models of radiation risk to the population of the Russian Federation. Radiatsiya i risk, 2019, vol. 28, no. 4, pp. 5–15. DOI: 10.21870/0131-3878-2019-28-4-5-15 (in Russian).
  42. Ivanov V.K., Chekin S.Yu., Kashcheev V.V., Maksyutov M.A., Korelo A.M., Menyailo A.N. Issledovanie vliyaniya neopredelennosti fonovykh pokazatelei zabolevaemosti na prognoz radiatsionnykh riskov po modelyam MKRZ dlya rossiiskikh populyatsii pri odnokratnom obluchenii [Effect produced by uncertainty of baseline incidence rates on estimating radiation risks with ICRP models for Russian populations following single exposure to radiation]. Radiatsiya i risk, 2013, vol. 22, no. 3, pp. 40–56 (in Russian).
  43. Andersson M., Eckerman K., Pawel D., Almén A., Mattsson S. Improved radiation risk models applied to different pa-tient groups in Sweden. Radiation Hygiene, 2019, vol. 12, no. 2, pp. 44–54. DOI: 10.21514/1998-426X-2019-12-2-44-54
  44. Golikov V.Yu., Vodovatov A.V., Chipiga L.A., Shatsky I.G. Evaluation of radiation risk for patients undergoing medical examinations in the Russian Federation]. Radiatsionnaya gigiena, 2021, vol. 14, no. 3, pp. 56–68. DOI: 10.21514/1998-426X-2021-14-3-56-68 (in Russian).
  45. Ivanov V.K., Tsyb A.F., Mettler F.A., Menyaylo A.N., Kashcheev V.V. Health risks of medical radiation exposure. Radiatsiya i risk, 2011, vol. 20, no. 2, pp. 17–28 (in Russian).
  46. Shimada K., Kai M. Calculating disability-adjusted life years (DALY) as a measure of excess cancer risk following radiation exposure. J. Radiol. Prot., 2015, vol. 35, no. 4, pp. 763–775. DOI: 10.1088/0952-4746/35/4/763
Accepted for publication: 

You are here