Questioning the early events leading to the COVID-19 pandemic

View or download the full article: 
UDC: 
614.4
Authors: 

J. Reis1, R. Frutos2, A. Buguet3, A. Le Faou4, G. Sandner5, G.C. Román6, P.S. Spencer7

Organization: 

1University of Strasbourg, Faculté de Médecine, Strasbourg, 67205, France
2Intertryp, Campus International de Baillarguet, Montpellier, 3438 Montpellier Cedex 5, France
3University Claude-Bernard Lyon-1, 43 Boulevard du 11 Novembre 1918, 69622, Villeurbanne, France
4Université de Lorraine, Faculté de Pharmacie and Faculté de Médecine Maïeutique et Métiers de la Santé, Vandoeuvre-lès-Nancy, 54500, France
5University of Strasbourg, Faculty of medicine, Strasbourg, 67100, France
6Neurological Institute, Houston Methodist Hospital, Houston, 6560, Texas, TX 77030, USA
7Oregon Institute of Occupational Health Sciences, Portland, OR 97239, USA

Abstract: 

Sixteen months after the January 30, 2020 declaration by the World Health Organization of a Public Health Emergency of International Concern regarding the spread of COVID-19, SARS-CoV-2 had infected ~ 170 million humans worldwide of which > 3.5 million had died. We critically examine information on the virus origin, when and where the first human cases occurred, and point to differences between Chinese and later clinical presentations. The official patient Zero was hospitalized in Wuhan, Hubei province, China, on December 8, 2019, but retrospective analyses demonstrate prior viral circulation. Coronaviruses are present in mammals and birds, but whether a wild animal (e.g. bat, pangolin) was the source of the human pandemic remains disputed. We present two contamination models, the spillover versus the circulation model; the latter brings some interesting hypotheses about previous SARS-CoV-2 virus circulation in the human population. The age distribution of hospitalized COVID-19 patients at the start of the epidemic differed between China and the USA–EU; Chinese hospitalized patients were notably younger. The first Chinese publications did not describe anosmia-dysgeusia, a cardinal symptom of COVID-19 in Europe and USA. The prominent endothelial involvement linked with thrombotic complications was discovered later. These clinical discrepancies might suggest an evolution of the virus.

Keywords: 
SARS-CoV-2 diagnostics, patient zero, zoonotic disease, autopsies, clinical presentation, dysgeusia / anosmia
Reis J., Frutos R., Buguet A., Le Faou A., Sandner G., Román G.C., Spencer P.S. Questioning the early events leading to the COVID-19 pandemic. Health Risk Analysis, 2021, no. 4, pp. 4–15. DOI: 10.21668/health.risk/2021.4.01.eng
References: 
  1. Giesecke J. Primary and index cases. Lancet, 2014, vol. 384, no. 9959, pp. 2024. DOI: 10.1016/S0140-6736(14)62331-X
  2. Archived: WHO Timeline – COVID-19: statement. World health organization, 27 April 2020. Available at: www.
    who.int/news/item/27-04-2020-who-timeline---covid-19 (27.09.2021).
  3. Timeline: WHO's COVID-19 response. World health organization. Available at: www.who.int/emergencies/diseases/novel-coronavirus-2019/interactive-time... (27.09.2021).
  4. WHO-convened global study of origins of SARS-CoV-2: China Part. Joint WHO – China study: 14 January–10 February. World health organization, 2021, 120 p. Available at: https://www.who.int/publications/i/item/who-convenedglobal-study-of-orig... (26.09.2021).
  5. Xiang N., Havers F., Chen T., Song Y., Tu W., Li L., Cao Y., Liu B. [et al.]. Use of national pneumonia surveillance to describe influenza A (H7N9) virus epidemiology, China, 2004–2013. Emerg. Infect. Dis., 2013, vol. 19, no. 11, pp. 1784–1790. DOI: 10.3201/eid1911.130865
  6. Li L., Wang K., Chen Z., Koplan J.P. US – China health exchange and collaboration following COVID-19. Lancet, 2021, vol. 397, no. 10291, pp. 2304–2308. DOI: 10.1016/S0140-6736 (21) 00734-0
  7. Fan Y., Zhao K., Shi Z.-L., Zhou P. Bat coronaviruses in China. Viruses, 2019, vol. 11, no. 3, pp. 210. DOI: 10.3390/v11030210
  8. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G. [et al.]. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, vol. 395, no. 10223, pp. 497–506. DOI: 10.1016/S0140-6736(20)30183-5
  9. Kong W.H., Li Y., Peng M.W., Kong D.-G., Yang X.-B., Wang L., Liu M.-Q. SARS-CoV-2 detection in patients with influenza-like illness. Nat. Microbiol., 2020, vol. 5, no. 5, pp. 675–678. DOI: 10.1038/s41564-020-0713-1
  10. A R., Wang H., Wang W., Tan W. Summary of the detection kits for SARS-CoV-2 approved by the National Medical Products Administration of China and their application for diagnosis of COVID-19. Virol. Sin., 2020, vol. 35, no. 6, pp. 699–712. DOI: 10.1007/s12250-020-00331-1
  11. Tan W., Zhao X., Ma X., Wang W., Niu P., Xu W., Gao G.F., Wu G. A novel coronavirus genome identified in a cluster of pneumonia cases – Wuhan, China 2019−2020. China CDC Weekly, 2020, vol. 2, no. 4, pp. 61–62.
  12. The 2019-nCoV Outbreak Joint Field Epidemiology Investigation Team, Li Q. An outbreak of NCIP (2019-nCoV) Infection in China — Wuhan, Hubei Province, 2019−2020. China CDC Weekly, 2020, vol. 2, no. 5, pp. 79–80.
  13. Zhu N., Zhang D., Wang W., Li X., Yang B., Song J., Zhao X., Huang B. [et al.]. A novel coronavirus from patients with pneumonia in China. N. Engl. J. Med., 2020, vol. 382, no. 8, pp. 727–733. DOI: 10.1056/NEJMoa2001017
  14. Wei Q., Wang Y., Ma J., Han J., Jiang M., Zhao L., Ye F., Song J. [et al.]. Description of the first strain of 2019-nCoV,
    C-Tan-nCoV Wuhan Strain National Pathogen Resource Center. China CDC Weekly, 2020, vol. 2, no. 6, pp. 81–82.
  15. Rapid risk assessment: Cluster of pneumonia cases caused by a novel coronavirus, Wuhan, China, 2020. European Centre for Disease Prevention and Control. Available at: https://www.ecdc.europa.eu/en/publications-data/rapid-risk-assessment-cl... (29.04.2021).
  16. Lawrence S.V. Congressional Research Service, COVID-19 and China: A chronology of Events, May 13, 2020. USC US – China Institute. Available at: https://china.usc.edu/congressional-research-service-covid-19-and-china-... (29.04.2021).
  17. Corman V.M., Landt O., Kaiser M., Molenkamp R., Meijer A., Chu D.K., Bleicker T., Brünink S. [et al.]. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill., 2020, vol. 25, no. 3, pp. 2000045. DOI: 10.2807/1560-7917.ES.2020.25.3.2000045
  18. Wu F., Zhao S., Yu B., Chen Y.M., Wang W., Song Z.G., Hu Y., Tao Z.W. [et al.]. A new coronavirus associated with human respiratory disease in China. Nature, 2020, vol. 579, no. 7798, pp. 265–269. DOI: 10.1038/s41586-020-2008-3
  19. Zhou P., Yang X., Wang X.-G., Hu B., Zhang L., Zhang W., Si H.-R., Zhu Y. [et al.]. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, vol. 579, no. 7798, pp. 270–273. DOI: 10.1038/s41586-020-2012-7
  20. Lu R., Zhao X., Li J., Niu P., Yang B., Wu H., Wang W., Song H. [et al.]. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet, 2020, vol. 395, no. 10224, pp. 565–574. DOI: 10.1016/S0140-6736(20)30251-8
  21. Li Q., Guan X., Wu P., Wang X., Zhou L., Tong Y., Ren R., Leung K.S.M. [et al.]. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N. Engl. J. Med., 2020, vol. 382, no. 13, pp. 1199–1207. DOI: 10.1056/NEJMoa2001316
  22. Chen N., Zhou M., Dong X., Qu J., Gong F., Han Y., Qiu Y., Wang J. [et al.]. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet, 2020, vol. 395, no. 10223, pp. 507–513. DOI: 10.1016/S0140-6736(20)30211-7
  23. Wang D., Hu B., Hu C., Zhu F., Liu X., Zhang J., Wang B., Xiang H. [et al.]. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA, 2020, vol. 323, no. 11, pp. 1061–1069. DOI: 10.1001/jama.2020.1585
  24. Report of the WHO–China Joint Mission on Coronavirus Disease 2019. World health organization, 28 February, 2020. Available at: www.who.int/publications/i/item/report-of-the-who-china-joint-mission-on...(covid-19) (19.09.2021).
  25. Ma J. Coronavirus: China’s first confirmed COVID-19 case traced back to November 17. South China Morning Post, 13 March, 2020. Available at: www.scmp.com/news/china/society/article/3074991/coronavirus-chinas-first... (22.09.2021).
  26. Chan J.F.-W., Yuan S., Kok K.-H., To K.K.-W., Chu H., Yang J., Xing F., Liu J. [et al.]. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet, 2020, vol. 395, no. 10223, pp. 514–523. DOI: 10.1016/S0140-6736(20)30154-9
  27. You C., Lin Q., Zhou X. An estimation of the total number of cases of NCIP (2019-nCoV) – Wuhan, Hubei Province, 2019–2020. China CDC Weekly, 2020, vol. 2, no. 6, pp. 87–91.
  28. Liu J., Liu S., Wei H., Yang X. Epidemiology, clinical characteristics of the first cases of COVID‐19. Eur. J. Clin. Invest., 2020, vol. 50, no. 10, pp. e13364. DOI: 10.1111/eci.13364
  29. Wang C., Horby P.W., Hayden F.G., Gao G.F. A novel coronavirus outbreak of global health concern. Lancet, 2020, vol. 395, no. 10223, pp. 470–473. DOI: 10.1016/S0140-6736(20)30185-9
  30. Stoecklin B.S., Rolland P., Silue Y., Mailles A., Campese C., Simondon A., Mechain M., Meurice L. First cases of coronavirus disease 2019 (COVID-19) in France: surveillance, investigations and control measures, January 2020. Euro Surveill., 2020, vol. 25, no. 6, pp. 2000094. DOI: 10.2807/1560-7917.ES.2020.25.6.2000094
  31. First travel-related case of 2019 novel coronavirus detected in United States. Centers for Disease Control and Prevention, January 21, 2020. Available at: https://www.cdc.gov/media/releases/2020/p0121-novel-coronavirus-travel-c... (18.09.2021).
  32. Giovannetti M., Benvenuto D., Angeletti S., Ciccozzi M. The first two cases of 2019-nCoV in Italy: Where they come from? J. Med. Virol., 2020, vol. 92, no. 5, pp. 518–521. DOI: 10.1002/jmv.25699
  33. Rothe C., Schunk M., Sothmann P., Bretzel G., Froeschl G., Wallrauch C., Zimmer T., Thiel V. [et al.]. Transmission of 2019-nCoV Infection from an asymptomatic contact in Germany. N. Engl. J. Med., 2020, vol. 382, no. 10, pp. 970–971. DOI: 10.1056/NEJMc2001468
  34. First two persons infected with coronavirus identified in Russia. TASS: Russian News Agency, 31 January 2020. Available at: https://tass.com/society/1115101 (05.09.2021).
  35. WHO Director-General's opening remarks at the media briefing on COVID-19. WHO, 2020. Available at: https://www.who.int/director-general/speeches/detail/who-director-genera... (05.09.2021).
  36. Kelly H. The classical definition of a pandemic is not elusive. Bull. World Health Organ., 2011, vol. 89, no. 7, pp. 540–541. DOI: 10.2471/BLT.11.088815
  37. Xiao X., Newman C., Buesching C.D., Macdonald D.W., Zhou Z.-M. Animal sales from Wuhan wet markets immediately prior to the COVID-19 pandemic. Sci. Rep., 2021, vol. 11, no. 1, pp. 11898. DOI: 10.1038/s41598-021-91470-2
  38. Bloom J.D., Chan Y.A., Baric R.S., Bjorkman P.J., Cobey S., Deverman B.E., Fisman D.N., Gupta R. [et al.]. Investigate the origins of COVID-19. Science, 2021, vol. 372, no. 6543, pp. 694. DOI: 10.1126/science.abj0016
  39. Zarocostas J. Calls for transparency after SARS-CoV-2 origins report. Lancet, 2021, vol. 397, no. 10282, pp. 1335. DOI: 10.1016/S0140-6736(21)00824-2
  40. Mallapaty S. After the WHO report: what’s next in the search for COVID’s origins. Nature, 2021, vol. 592, no. 7854, pp. 337–338. DOI: 10.1038/d41586-021-00877-4
  41. Frutos R., Lopez Roig M., Serra-Cobo J., Devaux C.A. COVID-19: the conjunction of events leading to the coronavirus pandemic and lessons to learn for future threats. Front. Med. (Lausanne), 2020, vol. 7, pp. 223. DOI: 10.3389/fmed.2020.00223
  42. Frutos R., Gavotte L., Devaux C.A. Understanding the origin of COVID-19 requires to change the paradigm on zoonotic emergence from the spillover model to the viral circulation model. Infect. Genet. Evol., 2021, vol. 95, pp. 104812. DOI: 10.1016/j.meegid.2021.104812
  43. Frutos R., Serra-Cobo J., Pinault L., Lopez Roig M., Devaux C.A. Emergence of bat-related betacoronaviruses: Hazard and risks. Front. Microbiol., 2021, vol. 12, pp. 591535. DOI: 10.3389/fmicb.2021.591535
  44. Platto S., Wang Y., Zhou J., Carafoli E. History of the COVID-19 pandemic: Origin, explosion, worldwide spreading. Biochem. Biophys. Res. Commun., 2021, vol. 538, pp. 14–23. DOI: 10.1016/j.bbrc.2020.10.087
  45. Plato S., Xue T., Carafoli E. COVID-19: an announced pandemic. Cell Death Dis., 2020, vol. 11, no. 9, pp. 799. DOI: 10.1038/s41419-020-02995-9
  46. Lai C.-C., Shih T.-P., Ko W.-C., Tang H.-J., Hsueh P.-R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int. J. Antimicrob. Agents., 2020, vol. 55, no. 3, pp. 105924. DOI: 10.1016/j.ijantimicag.2020.105924
  47. Gobbato M., Clagnan E., Burba I., Rizzi L., Grassetti L., Del Zotto S., Dal Maso L., Serraino D., Tonutti G. Clinical, demographical characteristics and hospitalisation of 3,010 patients with COVID-19 in Friuli Venezia Giulia Region (Northern Italy). A multivariate, population-based, statistical analysis. Epidemiol. Prev., 2020, vol. 44, no. 5–6, suppl. 2, pp. 226–234. DOI: 10.19191/EP20.5-6.S2.122
  48. Risk for COVID-19 Infection, Hospitalization, and Death by Age Group (Updated Feb. 18, 2021). Centers for Disease Control and Prevention. Available at: https://www.cdc.gov/coronavirus/2019-ncov/covid-data/investigations-disc... (02.04.2021).
  49. COVID-19 National Incident Room Surveillance Team. COVID-19, Australia: Epidemiology Report 16 (Reporting week to 23: 59 AEST 17 May 2020). Commun. Dis. Intell., 2020, vol. 44. DOI: 10.33321/cdi.2020.44.45
  50. Al-Mudhaffer R.H., Ahjel S.W., Hassan S.M., Mahmood A.A., Hadi N.R. Age Distribution of clinical symptoms, isolation, co-morbidities and Case Fatality Rate of COVID-19 cases in Najaf City, Iraq. Med. Arch., 2020, vol. 74, no. 5, pp. 363–367. DOI: 10.5455/medarh.2020.74.363-367
  51. Sultan O.M., Alghazali D.M., Al-Tameemi H., Abed M., Hawiji D.A., Abu Ghniem M.N., Al-Obaidi L., Abedtwfeq R.H. Age-related pattern and distribution of COVID-19 on pulmonary computed tomography. Curr. Med. Imaging., 2020, vol. 17, no. 6, pp. 775–780. DOI: 10.2174/1573405616666201223144539
  52. Mao L., Jin H., Wang M., Hu Y., Chen S., He Q., Chang J., Hong C. [et al.]. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol., 2020, vol. 77, no. 6, pp. 683–690. DOI: 10.1001/jamaneurol.2020.1127
  53. Vaira L.A., Lechien J.R., Khalife M., Petrocelli M., Hans S., Distinguin L., Salzano G., Cucurullo M. [et al.]. Psychophysical evaluation of the olfactory function: European Multicenter Study on 774 COVID-19 patients. Pathogens, 2021, vol. 10, no. 1, pp. 62. DOI: 10.3390/pathogens10010062
  54. Kaye R., Chang C.W.D., Kazahaya K., Brereton J., Denneny J.C. 3rd. COVID-19 anosmia reporting tool: Initial findings. Otolaryngol. Head Neck Surg., 2020, vol. 163, no. 1, pp. 132–134. DOI: 10.1177/0194599820922992
  55. Bagheri S.H., Asghari A., Farhadi M., Shamshiri A.R., Kabir A., Kamrava S.K., Jalessi M., Mohebbi A. [et al.]. Coincidence of COVID-19 epidemic and olfactory dysfunction outbreak in Iran. Med. J. Islam. Repub. Iran., 2020, vol. 34, pp. 62. DOI: 10.34171/mjiri.34.62
  56. Alerte anosmie – COVID-19 – 20 Mars 2020 [Anosmia alert – COVID-19 – March 20, 2020]. SNORL. Available at: https://www.snorl.org/category-acces-libre/category-actualites/alerte-an... (18.04.2021) (in French).
  57. Hopkins C., Kumar N. Loss of sense of smell as marker of COVID-19 infection. Letter by British Rhinological Society and Ear, Nose & Throat UK. ENT UK. Available at: https://www.entuk.org/sites/default/files/files/Loss%20of%20sense%20of%2... (10.05.2021).
  58. AAO-HNS COVID-19 Resources. American Academy of Otolaryngology – Head and Neck Surgery. Available at: https://www.entnet.org/content/aao-hns-anosmia-hyposmia-and-dysgeusia-sy... (04.05.2021).
  59. Lechien J.R., Chiesa-Estomba C.M., De Siati D.R., Horoi M., Le Bon S.D., Rodriguez A., Dequanter D., Blecic S. [et al.]. Olfactory and gustatory dysfunctions as a clinical presentation of mild‑to‑moderate forms of the coronavirus disease (COVID‑19): a multicenter European study. Eur. Arch. Otorhinolaryngol., 2020, vol. 277, no. 8, pp. 2251–2261. DOI: 10.1007/s00405-020-05965-1
  60. Vaira L.A., Salzano G., Deiana G., De Riu G. Anosmia and ageusia: Common findings in COVID-19 patients. Laryngoscope, 2020, vol. 130, no. 7, pp. 1787. DOI: 10.1002/lary.28692
  61. Lee Y., Min P., Lee S., Kim S.W. Prevalence and duration of acute loss of smell or taste in COVID-19 patients. J. Korean Med. Sci., 2020, vol. 35, no. 8, pp. e174. DOI: 10.3346/jkms.2020.35.e174
  62. Spinato G., Fabbris C., Polesel J., Cazzador D., Borsetto D., Hopkins C., Boscolo-Rizzo P. Alterations in smell or taste in mildly symptomatic outpatients with SARS-CoV-2 infection. JAMA, 2020, vol. 323, no. 20, pp. 2089–2090. DOI: 10.1001/jama.2020.6771
  63. Eliezer M., Hautefort C., Hamel A.L., Verillaud B., Herman P., Houdart E., Eloit C. Sudden and complete olfactory loss of function as a possible symptom of COVID-19. JAMA Otolaryngol. Head Neck Surg., 2020, vol. 146, no. 7, pp. 674–675. DOI: 10.1001/jamaoto.2020.0832
  64. Gilani S., Roditi R., Naraghi M. COVID-19 and anosmia in Tehran, Iran. Med. Hypotheses, 2020, vol. 141, pp. 109757. DOI: 10.1016/j.mehy.2020.109757
  65. Lechien J.R., Chiesa-Estomba C.M., Hans S., Barillari M.R., Jouffe L., Saussez S. Loss of smell and taste in 2013 European patients with mild to moderate COVID-19. Ann. Intern. Med., 2020, vol. 173, no. 8, pp. 672–675. DOI: 10.7326/M20-2428
  66. Saussez S., Lechien J.R., Hopkins C. Anosmia: an evolution of our understanding of its importance in COVID-19 and what questions remain to be answered. Eur. Arch. Otorhinolaryngol., 2021, vol. 278, no. 7, pp. 2187–2191. DOI: 10.1007/s00405-020-06285-0
  67. Whitcroft K.L., Hummel T. Olfactory dysfunction in COVID-19: Diagnosis and management. JAMA, 2020, vol. 323, no. 24, pp. 2512–2514. DOI: 10.1001/jama.2020.8391
  68. Li J., Long X., Zhu C., Wang H., Wang T., Lin Z., Li J., Xiong N. Olfactory dysfunction in recovered coronavirus disease 2019 (COVID-19) patients. Mov. Disord., 2020, vol. 35, no. 7, pp. 1100–1101. DOI: 10.1002/mds.28172
  69. Fodoulian L., Tuberosa J., Rossier D., Landis B.N., Boillat M., Kan C., Pauli V., Egervari K. [et al.]. SARS-CoV-2 receptor and entry genes are expressed in the human olfactory neuroepithelium and brain. iScience, 2020, vol. 23, no. 12, pp. 101839. DOI: 10.1016/j.isci.2020.101839
  70. Cespuglio R., Strekalova T., Spencer P.S., Roman G.C., Reis J., Bouteille B., Buguet A. SARS-CoV-2 infection and sleep disturbances: Nitric oxide involvement and therapeutic opportunity. Sleep, 2021, vol. 44, no. 3, pp. zsab009. DOI: 10.1093/sleep/zsab009
  71. Meng X., Deng Y., Dai Z., Meng Z. COVID-19 and anosmia: A review based on up-to-date knowledge. Am. J. Otolaryngol., 2020, vol. 41, no. 5, pp. 102581. DOI: 10.1016/j.amjoto.2020.102581
  72. Forster P., Forster L., Renfrew C., Forster M. Phylogenetic network analysis of SARS-CoV-2 genomes. Proc. Natl. Acad. Sci. U S A, 2020, vol. 117, no. 17, pp. 9241–9243. DOI: 10.1073/pnas.2004999117
  73. Zhou B., Zhao W., Feng R., Zhang X., Li X., Zhou Y., Peng L., Li Y. [et al.]. The pathological autopsy of coronavirus disease 2019 (COVID-2019) in China: a review. Pathog. Dis., 2020, vol. 78, no. 3, pp. ftaa026. DOI: 10.1093/femspd/ftaa026
  74. Su H., Yang M., Wan C., Yi L.X., Tang F., Zhu H.Y., Yi F., Yang H.C. [et al.]. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int., 2020, vol. 98, no. 1, pp. 219–227. DOI: 10.1016/j.kint.2020.04.003
  75. Hanley B., Lucas S.B., Youd E., Swift B., Osborn M. Autopsy in suspected COVID-19 cases. J. Clin. Pathol., 2020, vol. 73, no. 5, pp. 239–242. DOI: 10.1136/jclinpath-2020-206522
  76. Barton L.M., Duval E.J., Stroberg E., Ghosh S., Mukhopadhyay S. COVID-19 autopsies, Oklahoma, USA. Am. J. Clinical Pathol., 2020, vol. 153, no. 6, pp. 725–733. DOI: 10.1093/ajcp/aqaa062
  77. Paniz-Mondolfi A., Bryce C., Grimes Z., Gordon R.E., Reidy J., Lednicky J., Sordillo E.M., Fowkes M. Central nervous system involvement by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). J. Med. Virol., 2020, vol. 92, no. 7, pp. 699–702. DOI: 10.1002/jmv.25915
  78. Varga Z., Flammer A.J., Steiger P., Haberecker M., Andermatt R., Zinkernagel A.S., Mehra M.R., Schuepbach R.A. [et al.]. Endothelial cell infection and endotheliitis in COVID-19. Lancet, 2020, vol. 395, no. 10234, pp. 1417–1418. DOI: 10.1016/S0140-6736(20)30937-5
  79. Carsana L., Sonzogni A., Nasr A., Rossi R.S., Pellegrinelli A., Zerbi P., Rech R., Colombo R. [et al.]. Pulmonary post-mortem findings in a series of COVID-19 cases from northern Italy: a two-centre descriptive study. Lancet Infect. Dis., 2020, vol. 20, no. 10, pp. 1135–1140. DOI: 10.1016/S1473-3099(20)30434-5
  80. Menter T., Haslbauer J.D., Nienhold R., Savic S., Hopfer H., Deigendesch N., Frank S., Turek D. [et al.]. Postmortem examination of COVID-19 patients reveals diffuse alveolar damage with severe capillary congestion and variegated findings in lungs and other organs suggesting vascular dysfunction. Histopathology, 2020, vol. 77, no. 2, pp. 198–209. DOI: 10.1111/his.14134
  81. Frutos R., Gavotte L., Serra-Cobo J., Chen T., Devaux C. COVID-19 and emerging infectious diseases: The society is still unprepared for the next pandemic. Environ. Res., 2021, vol. 202, pp. 111676. DOI: 10.1016/j.envres.2021.111676
  82. Banerjee A.V., Duflo E. Poor Economics: A Radical Rethinking of the Way to Fight Global Poverty. New York, Public Affairs, 2012, 320 p.
Received: 
09.11.2021
Accepted: 
15.11.2021
Published: 
30.12.2021

You are here