On estimating the additional incidence of COVID-19 among populations exposed to polluted ambient air: methodical approaches and some practical results

View or download the full article: 
UDC: 
614.1; 614.4
Authors: 

N.V. Zaitseva1, I.V. May1, J. Reis2, P.S. Spenser3, D.A. Kiryanov1, M.R. Kamaltdinov1

Organization: 

1 Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, 82 Monastyrskaya Str., Perm, 614045, Russian Federation
2 University of Strasbourg, Faculté de Médecine, Strasbourg, 67205, France
3 Oregon Health & Science University, Portland, Oregon 97201, USA

Abstract: 

This research is vital due to the considerable global medical and demographic losses during the COVID-19 pandemic and the latest research works providing evidence of a correlation between air pollution and spread of the disease, its severity, clinical course and outcomes.

Our research goal was to quantitatively estimate the influence of ambient air pollution on SARS-CoV-2 spread among populations in six cities in the Russian Federation. These cities were among priority ones as per air pollution and were included in the “Clean air” Federal project (Bratsk, Krasnoyarsk, Norilsk, Omsk, Cherepovets, and Lipetsk).

Our hypothesis was that dynamic features of the infection spread would be different from an expected model of its epi-demiologic process under exposure to environmental pollution. Regression and correlation analysis was performed for rela-tionships between a daily deviation in actual incidence from a basic epidemiologic scenario and the average daily concentrations of chemicals in ambient air. The initial data were results obtained from instrument measurements of ambient air quality in the examined cities (approximately 10.8 thousand measurements covering 29 chemicals) and the daily incidence of COVID-19 from April 18, 2020 to July 31, 2021 (77,337 cases).

An authentic correlation between COVID-19 incidence and chemical concentrations in ambient air was detected in all six examined cities. The contribution of air pollution to COVID-19 prevalence amounted to 5.0 ± 2.6 % in five cities (Krasnoyarsk, Norilsk, Omsk, Cherepovets, and Lipetsk) over the examined period. In Bratsk, this value was about 33% and it requires additional research for either confirmation or correction. Growth in COVID-19 incidence in the examined territories is associated with particulate matter (PM10, PM2.5) and some other chemicals that can irritate the airway directly or indirectly (sulfuric acid vapors, hydrogen chloride, formaldehyde, hydrogen sulphide, etc.). Target levels were substantiated for several priority chemicals; should these levels be achieved, one would predict a decrease in COVID-19 prevalence by more than 1-3% in the examined cities.

We propose that population morbidity and mortality caused by COVID-19 require further studies, including those combined with medical and biological examination regarding efficiency of vaccination and post-vaccination immunity persistence on territories with elevated environmental pollution.

Keywords: 
СOVID-19, ambient air pollution, chemicals, target levels
Zaitseva N.V., May I.V., Reis J., Spenser P., Kiryanov D.A., Kamaltdinov M.R. On estimating the additional incidence of covid-19 among populations exposed to polluted ambient air: methodical approaches and some practical results. Health Risk Analysis, 2021, no. 3, pp. 14–28. DOI: 10.21668/health.risk/2021.3.02.eng
References: 
  1. Becker S., Soukup J.M. Exposure to urban air particulates alters the macrophage-mediated inflammatory response to respiratory viral infection. J. Toxicol. Environ. Health A., 1999, vol. 57, no. 7, pp. 445–457. DOI: 10.1080/009841099157539
  2. Cui Y., Zhang Z.-F., Froines J., Zhao J., Wang H., Yu S.-Z., Detels R. Air pollution and case fatality of SARS in the People's Republic of China: an ecologic study. Environ. Heath, 2003, vol. 2, no. 1, pp. 15. DOI: 10.1186/1476-069X-2-15
  3. Ciencewicki J., Jaspers I. Air pollution and respiratory viral infection. Inhal. Toxicol., 2007, vol. 19, no. 14, pp. 1135–1146. DOI: 10.1080/08958370701665434
  4. Troeger C., Forouzanfar M., Rao P.C., Khalil I., Brown A., Swartz S., Fullman N., Mosser J. [et al.]. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory tract infections in 195 countries: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Infect. Dis., 2017, vol. 17, no. 11, pp. 1133–1161. DOI: 10.1016/S1473-3099(17)30396-1
  5. Su W., Wu X., Geng X., Zhao X., Liu Q., Liu T. The short-term effects of air pollutants on influenza-like illness in Jinan, China. BMC Public Health, 2019, vol. 19, no. 1, pp. 1319. DOI: 10.1186/s12889-019-7607-2
  6. Gordon S.B., Bruce N.G., Grigg J., Hibberd P.L., Kurmi O.P., Lam K.B., Mortimer K., Asante K.P. [et al.]. Respiratory risks from household air pollution in low and middle income countries. Lancet Respir. Med., 2014, vol. 2, no. 10, pp. 823–860. DOI: 10.1016/S2213-2600(14)70168-7
  7. GBD 2016 Lower Respiratory Infections Collaborators. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory infections in 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect. Dis., 2018, vol. 18, no. 11, pp. 1191–1210. DOI: 10.1016/S1473-3099(18)30310-4
  8. Wolkoff P. Indoor air humidity, air quality, and health – An overview. Int. J. Hyg. Environ. Health, 2018, vol. 221, no. 3, pp. 376–390. DOI: 10.1016/j.ijheh.2018.01.015
  9. Katoto P.D.M.C., Brand A.S., Bakan B., Obadia P.M., Kuhangana C., Kayembe-Kitenge T., Kitenge J.P., Nkulu C.B.L. [et al.]. Acute and chronic exposure to air pollution in relation with incidence, prevalence, severity and mortality of COVID-19: a rapid systematic review. Environ. Health, 2021, vol. 20, no. 1, pp. 41. DOI: 10.1186/s12940-021-00714-1
  10. Zoran M.A., Savastru R.S., Savastru D.M., Tautan M.N. Assessing the relationship between ground levels of ozone (O3) and nitrogen dioxide (NO2) with coronavirus (COVID-19) in Milan, Italy. Sci. Total Environ., 2020, vol. 740, pp. 140005. DOI: 10.1016/j.scitotenv.2020.140005
  11. Comunian S., Dongo D., Milani C., Palestini P. Air pollution and COVID-19: The role of particulate matter in the spread and increase of COVID-19’s morbidity and mortality. Int. J. Environ. Res. Public Health, 2020, vol. 17, no. 12, pp. 4487. DOI: 10.3390/ijerph17124487
  12. Villeneuve P.J., Goldberg M.S. Methodological considerations for epidemiological studies of air pollution and the SARS and COVID-19 coronavirus outbreaks. Environ. Health Perspect., 2020, vol. 128, no. 9, pp. 95001. DOI: 10.1289/EHP7411
  13. Chakraborty P., Jayachandran S., Padalkar P., Sitlhou L., Chakraborty S., Kar R., Bhaumik S., Srivastava M. Exposure to nitrogen dioxide (NO2) from vehicular emission could increase the COVID-19 pandemic fatality in India: a perspective. Bull. Environ. Contam. Toxicol., 2020, vol. 105, no. 2, pp. 198–204. DOI: 10.1007/s00128-020-02937-3
  14. Fattorini D., Regoli F. Role of the chronic air pollution levels in the COVID-19 outbreak risk in Italy. Environ. Pollut., 2020, vol. 264, pp. 114732. DOI: 10.1016/j.envpol.2020.114732
  15. Vasquez-Apestegui V., Parras-Garrido E., Tapia V., Paz-Aparicio V.M., Rojas J.P., Sánchez-Ccoyllo O.R., Gonzales G.F. Association between air pollution in Lima and the high incidence of COVID-19: findings from a post hoc analysis. Res. Sq., 2020, vol. 3, pp. 39404. DOI: 10.21203/rs.3.rs-39404/v1
  16. Frontera A., Cianfanelli L., Vlachos K., Landoni G., Cremona G. Severe air pollution links to higher mortality in COVID-19 patients: the “double-hit” hypothesis. J. Inf. Secur., 2020, vol. 81, no. 2, pp. 255–259. DOI: 10.1016/j.jinf.2020.05.031
  17. Transmission of SARS-CoV-2: implications for infection prevention precautions: scientific brief, 09 July 2020. WHO, 2020, 10 p. Available at: https://apps.who.int/iris/bitstream/handle/10665/333114/WHO-2019-nCoV-Sc... (19.08.2021).
  18. Van Doremalen N., Bushmaker T., Morris D.H., Holbrook M.G., Gamble A., Williamson B.N., Tamin A., Harcourt J.L. [et al.]. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-19. New England Journal of Medicine, vol. 382, no. 16, pp. 1564–1567. DOI: 10.1056/NEJMc2004973
  19. Wu X., Nethery R.C., Sabath M.B., Braun D., Dominici F. Exposure to air pollution and COVID-19 mortality in the United States: A nationwide cross-sectional study. MedRxiv, 2020.DOI: 10.1101/2020.04.05.2005450220.
  20. Setti L., Passarini F., De Gennaro G., Barbieri P., Licen S., Perrone M.G., Piazzalunga A., Borelli M. [et al.]. Potential role of particulate matter in the spreading of COVID-19 in Northern Italy: first observational study based on initial epidemic diffusion. BMJ Open, 2020, vol. 10, no. 9, pp. e039338. DOI: 10.1136/bmjopen-2020-039338
  21. Zhu Y., Xie J., Huang F., Cao L. Association between short-term exposure to air pollution and COVID-19 infection: evidence from China. Sci. Total Environ., 2020, vol. 727, pp. 138704. DOI: 10.1016/j.scitotenv.2020.138704
  22. Bontempi E. First data analysis about possible COVID-19 virus airborne diffusion due to air particulate matter (PM): the case of Lombardy (Italy). Environ. Res., 2020, vol. 186, pp. 109639. DOI: 10.1016/j.envres.2020.109639
  23. Giani P., Castruccio S., Anav A., Howard D., Hu W., Crippa P. Short-term and long-term health impacts of air pollution reductions from COVID-19 lockdowns in China and Europe: a modelling study.
    Lancet Planetary Health, 2020, vol. 4, no. 10, pp. e474–e482. DOI: 10.1016/S2542-5196(20)30224-2
  24. Domingo J.L., Marquès M., Rovira J. Influence of airborne transmission of SARS-CoV-2 on COVID-19 pandemic. A review. Environmental Research, 2020, vol. 188, pp. 109861. DOI:10.1016/j.envres.2020.109861
  25. Copat C., Cristaldi A., Fiore M., Grasso A., Zuccarello P., Signorelli S.S., Oliveri G., Ferrante C.M. The role of air pollution (PM and NO2) in COVID-19 spread and lethality: a systematic review. Environ. Res., 2020, vol. 191, pp. 110129. DOI: 10.1016/j.envres.2020.110129
  26. Bourdrel T., Annesi-Maesano I., Alahmad B., Maesano С.N., Bind M.-A. The impact of outdoor air pollution on COVID-19: a review of evidence from in vitro, animal, and human studies. Europ. Respir. Rev., 2021, vol. 30, no. 159, pp. 200242. DOI: 10.1183/16000617.0242-2020
  27. Khan M.M.A., Khan M.N., Mustagir M.G., Rana J., Islam M.S., Kabir M.I. Effects of underlying morbidities on the occurrence of deaths in COVID-19 patients: a systematic review and meta-analysis. J. Glob. ealth, 2020, vol. 10, no. 2, pp. 020503. DOI: 10.7189/jogh.10.020503
  28. Bornstein S.R., Voit-Bak K., Schmidt D., Morawietz H., Bornstein A.B., Balanzew W., Julius U., Rodionov R.N. [et al.]. Is there a role for environmental and metabolic factors predisponsing to severe COVID-19. Horm. Metab. Res., 2020, vol. 52, no. 7, pp. 540–546. DOI: 10.1055/a-1182-2016
  29. Ogen Y. Assessing nitrogen dioxide (NO2) levels as a contributing factor to coronavirus (COVID-19) fatality. Sci. Total. Environ., 2020, vol. 726, pp. 138605. DOI: 10.1016/j.scitotenv.2020.138605
  30. Zagorodnov S. Dust contamination of the atmospheric air of the city as an undervalued risk factor to human health. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo niversiteta.Prikladnaya ekologiya. Urbanistika, 2018, no. 2 (30), pp. 124–133. DOI: 10.15593/2409-5125/2018.02.10 (in Russian).
  31. Kleyn S.V., Zaitseva N.V., Vekovshinina S.A., Andrishunas A.M. Ambient air quality factors and people health. 20th International Multidisciplinary Scientific GeoConference SGEM 2020, 2020, vol. 20, pp. 115–124. Available at: https://www.sgem.org/index.php/elibrary?view=publication&task=show&id=7663 (02.09.2021).
  32. Klyuev N.N., Yakovenko L.M. “Dirty” cities in Russia: factors determining air pollution. Vestnik Rossiiskogo universiteta druzhby narodov. Seriya: Ekologiya i bezopasnost' zhiznedeyatel'nosti, 2018, vol. 26, no. 2, pp. 237–250. DOI: 10.22363/2313-2310-2018-26-2-237-250 (in Russian).
  33. Revich B.A. Natsional'nyi proekt “Chistyi vozdukh” v kontekste okhrany zdorov'ya naseleniya [National “Clean Air” Project in the context of public health protection]. Ekologicheskii vestnik Rossii, 2019, no. 4, pp. 64–69 (in Russian).
  34. Kleyn S.V., Popova E.V. Hygienic assessment of ambient air quality in Chita, a priority area of the Federal “Clean Air” Project. Zdorov'e naseleniya i sreda obitaniya, 2020, no. 12 (333), pp. 31–37 (in Russian).
  35. Maksimova E.V., Kokoulina A.A., Perezhogin A.N., Zhdanova-Zaplesvichko I.G. Gigienicheskaya otsenka kachestva atmosfernogo vozdukha g. Bratska do realizatsii meropriyatii federal'nogo proekta “Chistyi vozdukh” [Hygienic assessment of the quality of atmospheric air in Bratsk before the implementation of the measures of the “Clean Air” Federal Project]. Analiz riska zdorov'yu – 2020 sovmestno s mezhdunarodnoi vstrechei po okruzhayushchei srede i zdorov'yu Rise-2020 i kruglym stolom po bezopasnosti pitaniya: materialy X Vserossiiskoi nauchno-prakticheskoi konferentsii s mezhdunarodnym uchastiem. In: A.Yu. Popova, N.V. Zaitseva eds., 2020, pp. 273–278 (in Russian).
  36. On the state of sanitary and epidemiological well-being of the population in the Russian Federation and Human Welfare, 2021. Available at: https://www.rospotrebnadzor.ru/upload/iblock/5fa/gdseb_02.06-s-podpisyu.pdf (01.09.2021) (in Russian).
  37. Scherbatyuk A. Comparative estimation of environmental safety of air of some Russian Federation's federal districts. Vestnik Zabaikal'skogo gosudarstvennogo universiteta, 2017, vol. 23, no. 9, pp. 53–66. DOI: 10.21209/2227-9245-2017-23-9-53-66 (in Russian).
  38. Ilyina S.V., Stepanenko L.A., Kiklevich V.T., Gavrilova T.A., Savilov E.D. Vaktsinoprofilaktika poliomielita zhivoi poliovaktsinoi v usloviyakh ekologicheskogo neblagopoluchiya [Vaccine prophylaxis of poliomyelitis with live polio vaccine in environmental conditions]. Sibirskii meditsinskii zhurnal (Irkutsk), 2005, vol. 56, no. S7, pp. 48–49 (in Russian).
  39. Ilyina S.V., Dronova M.A., Kiklevich V.Т., Savilov Ye. D., Briko N.I. Pertussis in children in high technogenically polluted 18 environmental areas. Epidemiologiya i infektsionnye bolezni, 2007, no. 1, pp. 18–20 (in Russian).
  40. Makarova V., Ustinova O.Yu., Dolgikh O.V., Zagumennyh A.D. Immune profile and postvaccinal immune status for infections, controlled by the immunoprophylaxis implements for children under the combined aerogenic exposition by chemical anthropogenic substances. Zdorov'e naseleniya i sreda obitaniya, 2013, no. 11 (248), pp. 27–29 (in Russian).
  41. Popova A.Yu., Ezhlova E.B., Mel'nikova A.A., Balakhonov S.V., Chesnokova M.V., Dubrovina V.I., Lyalina L.V., Smirnov V.S. [et al.]. Experience in studying seroprevalence to SARS-CoV-2
    virus in the population of the Irkutsk region during COVID-19 outbreak. Problemy osobo opasnykh infektsii, 2020, no. 3, pp. 106–113 (in Russian).
  42. Anderson R.M., Heesterbeek H., Klinkenberg D., Hollingsworth T.D. How will country-based mitigation measures influence the course of the COVID-19 epidemic? The Lancet, 2020, vol. 395, no. 10228, pp. 931–934. DOI: 10.1016/s0140-6736(20)30567-5
  43. Salathé M., Althaus C.L., Neher R., Stringhini S., Hodcroft E., Fellay J., Zwahlen M., Senti G. [et al.]. COVID-19 epidemic in Switzerland: On the importance of testing, contact tracing and isolation. Swiss. Med. Wkly, 2020, vol. 150, pp. w20225. DOI: 10.4414/smw.2020.20225
  44. Padron-Regalado E. Vaccines for SARS-CoV-2: Lessons from other coronavirus strains. Infect. Dis. Ther., 2020, vol. 9, no. 2, pp. 1–20. DOI: 10.1007/s40121-020-00300-x
Received: 
30.04.2021
Accepted: 
23.09.2021
Published: 
30.09.2021

You are here