Assessing risks caused by nickel-containing nanomaterials: Hazard characterization in vivo

View or download the full article: 
UDC: 
544.77:546.74:54-[31+36]:576.[34+35+36]:57.044:613.6.027:613.2.099
Authors: 

I.V. Gmoshinski1, S.A. Khotimchenko1,2

Organization: 

1 Federal Research Centre of Nutrition, Biotechnology and Food Safety, 2/14 Ustinsky lane, Moscow, 109240, Russian Federation
2 I.M. Sechenov First Moscow State Medical University, 2 Bldg., 8 Trubetskaya Str., Moscow, 119991, Russian Federation

Abstract: 

Nanoparticles (NP) of nickel (Ni) and its compounds are promising materials for being used as catalysts in chemical, pharmaceutical and food industry; as construction materials in electronics and optoelectronics, in manufacturing current sources, medications, diagnostic preparations, and pesticides. Annual production volumes for these materials in their nanoform are equal to dozen tons and are expected to growth further. According to data obtained via multiple research nanoforms of Ni and its compounds are toxic to many types of cells; stimulate apoptosis; and can induce malignant transformation in vitro. It indicates that this group of nanomaterials can possibly be hazardous for human health. Risk assessment includes such a necessary stage as quantitative hazard characterization, that is, establishing toxic and maximum no-observed-adverse-effect levels (NOAEL) for a nanomaterial that penetrates into a body via inhalation, through undamaged skin, or the gastrointestinal tract. Experiments in vivo performed on laboratory animals with Ni-containing materials revealed overall toxic effects; toxicity to specific organs (including hepatoxoticity and cardiotoxicity); atherogenic, allergenic, and immune-toxic effects, as well as reproductive toxicity. There are multiple available data indicating that all Ni-containing nanomaterials are genotoxic and mutagenic, though data on their carcinogenic potential are rather scarce. Factors that determine toxicity of Ni and its compounds in nanoform are their ability to penetrate through biological barriers and to release free Ni++ ions in biological media.

The review focuses on analyzing and generalizing data on toxicity signs in vivo and effective toxic doses under various introductions of Ni and its compounds in nanoform into a body over a period starting predominantly from 2011.

Keywords: 
nickel, nickel oxide, nanoparticles, genotoxicity, allergenic capacity, reproductive toxicity, carcinogenicity, occupational exposure, risk assessment
Gmoshinski I.V., Khotimchenko S.A. Assessing risks caused by nickel-containing nanomaterials: hazard characterization in vivo. Health Risk Analysis, 2021, no. 3, pp. 162–176. DOI: 10.21668/health.risk/2021.3.18.eng
References: 
  1. Gomes S.I.L., Roca C.P., Scott-Fordsmand J.J., Amorim M.J.B. High-throughput transcriptomics: insights into the pathways involved in (nano) nickel toxicity in a key invertebrate test species. Environ. Pollut, 2019, vol. 245, pp. 131–140. DOI: 10.1016/j.envpol.2018.10.123
  2. Katsnelson B., Privalova L., Sutunkova M.P., Gurvich V. B., Loginova N.V., MinigalievaI.A., Kireyeva E.P., Shur V.Y. [et al.]. Some inferences from in vivo experiments with metal and metal oxide nanoparticles: the pulmonary phagocytosis response, subchronic systemic toxicity and genotoxicity, regulatory proposals, searching for bioprotectors , a self-overview. Int. J. Nanomed., 2015, vol. 10, pp. 3013–3029. DOI: 10.2147/IJN.S80843
  3. Magaye R., Zhao J. Recent progress in studies of metallic nickel and nickel-based nanoparticles' genotoxicity and car-cinogenicity. Environ. Toxicol. Pharmacol, 2012, vol. 34, no. 3, pp. 644–650. DOI: 10.1016/j.etap.2012.08.012
  4. Ali A., Suhail M., Mathew S., Shah M.A., Harakeh S.M., Ahmad S., Kazmi Z., Alhamdan M.A.R. [et al.] Nanomaterial induced immune responses and cytotoxicity. J. Nanosci. Nanotechnol., 2016, vol. 16, no. 1, pp. 40–57. DOI: 10.1166/jnn.2016.10885
  5. Kornick R., Zug K.A. Nickel. Dermatitis, 2008, vol. 19, pp. 3–8.
  6. Magaye R.R., Yue X., Zou B., Shi H., Yu H., Liu K., Lin X., Xu J. [et al.]. Acute toxicity of nickel nanoparticles in rats after intravenous injection. Int. J. Nanomed., 2014, vol. 9, pp. 1393–1402. DOI:10.2147/ijn.S56212
  7. Marzban A., Seyedalipour B., Mianabady M., Taravati A., Hoseini S.M. Biochemical, toxicological, and histopatholog-ical outcome in rat brain following treatment with NiO and NiO nanoparticles. Biol.Trace Elem. Res., 2020, vol. 196, no. 2, pp. 528–536. DOI: 10.1007/s12011-019-01941-x
  8. Katsnelson B.A., Minigaliyeva I.A., Panov V.G., Privalova L.I., Varaksin A.N., Gurvich V.B., Sutunkova M.P., ShurV.Ya. [et al.]. Some patterns of metallic nanoparticles' combined subchronic toxicity as exemplified by a combination of nickel and manganese oxide nanoparticles. Food Chem. Toxicol., 2015, vol. 86, pp. 351–364. DOI: 10.1016/j.fct.2015.11.012
  9. Hussain M.F., Ashiq M.N., Gulsher M., Akbar A., Iqbal F. Exposure to variable doses of nickel oxide nanoparticles disturbs serum biochemical parameters and oxidative stress biomarkers from vital organs of albino mice in a sex-specific manner. Biomarkers, 2020, vol. 25, no. 8, pp. 719–724. DOI: 10.1080/1354750X.2020.1841829
  10. Iqbal S., Jabeen F., Peng C., Ijaz M.U., Chaudhry A.S. Cinnamomum cassia ameliorates Ni-NPs-induced liver and kidney damage in male Sprague Dawleyrats. Hum. Exp. Toxicol., 2020, vol. 39, no. 11, pp. 1565–1581. DOI: 10.1177/0960327120930125
  11. Nishi K., Morimoto Y., Ogami A., Murakami M., Myojo T., Oyabu T., Kadoya C., Yamamoto M. [et al.]. Expression of cytokine-induced neutrophil chemoattractant in rat lungs by intratracheal instillation of nickel oxide nanoparticles. Inhal. Toxicol., 2009, vol. 21, no. 12, pp. 1030–1039. DOI: 10.1080/08958370802716722
  12. Morimoto Y., Hirohashi M., Ogami A., Oyabu T., Myojo T., Hashiba M., Mizuguchi Y., Kambara T. [et al.]. Expres-sion of cytokine-induced neutrophil chemoattractant in rat lungs following an intratracheal instillation of micron-sized nickel oxide nanoparticle agglomerate. Toxicol. Industrial. Health, 2014, vol. 30, no. 9, pp. 851–860. DOI: 10.1177/0748233712464807
  13. Morimoto Y., Ogami A., Todoroki M., Yamamoto M., Murakami M., Hirohashi M., Oyabu T., Myojo T. [et al.]. Ex-pression of inflammation-related cytokines following intratracheal instillation of nickel oxide nanoparticles. Nanotoxicology, 2010, vol. 4, no. 2, pp. 161–176. DOI: 10.3109/17435390903518479
  14. Shinohara N., Zhang G., Oshima Y., Kobayashi T., Imatanaka N., Nakai M., Sasaki T., Kawaguchi K., Gamo M. Ki-netics and dissolution of intratracheally administered nickel oxide nanomaterials in rats. Part. Fibre. Toxicol., 2017, vol. 14, no. 1, pp. 48. DOI: 10.1186/s12989-017-0229-x
  15. Nishi K.-I., Kadoya C., Ogami A., Oyabu T., Morimoto Y., Ueno S., Myojo T. Changes over time in pulmonary in-flammatory response in rat lungs after intratracheal instillation of nickel oxide nanoparticles. J. Occup. Health, 2020, vol. 62, no. 1, pp. e12162. DOI: 10.1002/1348-9585.12162
  16. Sager T., Wolfarth M., Keane M., Porter D., Castranova V., Holian A. Effects of nickel-oxide nanoparticle pre-exposure dispersion status on bioactivity in the mouse lung. Nanotoxicology, 2016, vol. 10, no. 2, pp. 151–161. DOI: 10.3109/17435390.2015.1025883
  17. Cao Z., Fang Yi., Lu Y., Qian F., Ma Q., He M., Pi H., Yu Z., Zhou Z. Exposure to nickel oxide nanoparticles induces pulmonary inflammation through NLRP3 inflammasome activation in rats. Int. J. Nanomedicine, 2016, vol. 11, pp. 3331–3346. DOI: 10.2147/IJN.S106912
  18. Magaye R., Gu Y., Wang Y., Su H., Zhou Q., Mao G., Shi H., Yue X., Zou B. [et al.]. In vitro and in vivo evaluation of the toxicities induced by metallic nickel nano and fine particles. J. Mol. Histol, 2016, vol. 47, no. 3,pp. 273–286. DOI: 10.1007/s10735-016-9671-6
  19. Bai K.-J., Chuang K.-J., Chen J.-K., Hua H.-E., Shen Y.-L., Liao W.-N., Lee C.-H., Chen K.-Y. [et al.]. Investigation into the pulmonary inflammopathologyof exposure to nickel oxide nanoparticles in mice. Nanomedicine, 2018, vol. 14, no. 7, pp. 2329–2339. DOI: 10.1016/j.nano. 2017.10.003
  20. Oyabu T., Myojo T., Lee B.-W., Okada T., Izumi H., Yoshiura Y., Tomonaga T., Li Y.-S. [et al.].Biopersistence of NiO and TiO2 nanoparticles following intratracheal instillation and inhalation. Int. J. Mol. Sci., 2017, vol. 18, no. 12, pp. 2757. DOI: 10.3390/ijms18122757
  21. Mo Y., Zhang Y., Mo L., Wan R., Jiang M., Zhang Q. The role of miR-21 in nickel nanoparticle-induced MMP-2 and MMP-9 production in mouse primary monocytes: in vitro and in vivo studies. Environ. Pollut., 2020, vol. 267, pp. 115597. DOI: 10.1016/j.envpol.2020.115597
  22. Mo Y., Zhang Y., Wan R., Jiang M., Xu Y., Zhang Q. miR-21 mediates nickel nanoparticle-induced pulmonary injury and fibrosis. Nanotoxicology, 2020, vol. 14, no. 9, pp. 1175–1197. DOI: 10.1080/17435390.2020.1808727
  23. Mo Y., Jiang M., Zhang Y., Wan R., Li J., Zhong C.-J., Li H., Tang S., Zhang Q. Comparative mouse lung injury by nickel nanoparticles with differential surface modification. J. Nanobiotechnology, 2019, vol. 17, no. 1, pp. 2. DOI: 10.1186/s12951-018-0436-0
  24. Senoh H., Kano H., Suzuki M., Fukushima S., Oshima Y., Kobayashi T., Morimoto Y., Izumi H. [et al.]. Inter-laboratory comparison of pulmonary lesions induced by intratracheal instillation of NiO nanoparticle in rats: histopathological examination results. J. Occup. Health, 2020, vol. 62, no. 1, pp. e12117. DOI: 10.1002/1348-9585.12117
  25. Senoh H., Kano H., Suzuki M., Ohnishi M., Kondo H., Takanobu K., Umeda Y., Aiso S., Fukushima S. Comparison of single or multiple intratracheal administration for pulmonary toxic responses of nickel oxide nanoparticles in rats. J. Occup. Health, 2017, vol. 59, no. 2, pp. 112–121. DOI: 10.1539/joh.16-0184-OA
  26. Chang X., Liu F., Tian M., Zhao H., Han A., Sun Y. Nickel oxide nanoparticles induce hepatocyte apoptosis via activating endoplasmic reticulum stress pathways in rats. Environ. Toxicol., 2017, vol. 32, no. 12, pp. 2492–2499. DOI: 10.1002/tox.22492
  27. Chang X.H., Zhu A., Liu F.F., Zou L.Y., Su L., Liu S.K., Zhou H.H., Sun Y.Y. [et al.]. Nickel oxide nanoparticles in-duced pulmonary fibrosis via TGF-1 activation in rats. Hum. Exp. Toxicol., 2017, vol. 36, no. 8, pp. 802–812. DOI: 10.1177/0960327116666650
  28. Liu S., Zhu A., Chang X., Sun Y., Zhou H., Sun Y., Zou L., Sun Y., Su L. Role of nitrative stress in nano nickel oxide-induced lung injury in rats. Wei Sheng Yan Jiu, 2016, vol. 45, no. 4, pp. 563–567 (in Chinese).
  29. Chang X., Zhu A., Liu F., Zou L., Su L., Li S., Sun Y. Role of NF-B activation and Th1/Th2 imbalance in pulmonary toxicity induced by nanoNiO. Environ. Toxicol., 2017, vol. 32, no. 4, pp. 1354–1362. DOI: 10.1002/tox.22329
  30. Yu S., Liu F., Wang C., Zhang J., Zhu A., Zou L., Han A., Li J. [et al.]. Role of oxidative stress in liver toxicity induced by nickel oxide nanoparticles in rats. Mol. Med. Rep., 2018, vol. 17, no. 2, pp. 3133–3139. DOI: 10.3892/mmr.2017.8226
  31. You D.J., Lee H.Y., Taylor-Just A.J., Linder K.E., Bonner J.C. Sex differences in the acute and subchronic lung in-flammatory responses of mice to nickel nanoparticles. Nanotoxicology, 2020, vol. 14, no. 8, pp. 1058–1081. DOI: 10.1080/17435390.2020.1808105
  32. Zhang Q., Chang X., Wang H., Liu Y., Wang X., Wu M., Zhan H., Li S., Sun Y. TGF-β1 mediated Smad signaling path-way and EMT in hepatic fibrosis induced by Nano NiO in vivo and in vitro. Environ. Toxicol., 2020, vol. 35, no. 4, pp. 419–429. DOI: 10.1002/tox.22878
  33. Mizuguchi Y., Myojo T., Oyabu T., Hashiba M., Lee B.W., Yamamoto M., Todoroki M., Nishi K. [et al.]. Compari-son of dose-response relations between 4-week inhalation and intratracheal instillation of NiO nanoparticles using polimorpho-nuclear neutrophils in bronchoalveolar lavage fluid as a biomarker of pulmonary inflammation. Inhal. Toxicol., 2013, vol. 25, no. 1, pp. 29–36. DOI: 10.3109/08958378.2012.751470
  34. Horie M., Yoshiura Y., Izumi H., Oyabu T., Tomonaga T., Okada T., Lee B.-W., Myojo T. [et al.]. Comparison of the pulmonary oxidative stress caused by intratracheal instillation and inhalation of NiO nanoparticles when equivalent amounts of NiO are retained in the lung. Antioxidants (Basel), 2016, vol. 5, no. 1, pp. 4. DOI: 10.3390/antiox5010004
  35. Kadoya C., Lee B.-W., Ogami A., Oyabu T., Nishi K.-I., Yamamoto M., Todoroki M., Morimoto Y. [et al.]. Analysis of pulmonary surfactant in rat lungs after inhalation of nanomaterials: fullerenes, nickel oxide and multi-walled carbon nanotubes. Nanotoxicology, 2016, vol. 10, no. 2, pp. 194–203. DOI: 10.3109/17435390.2015.1039093
  36. Sutunkova M.P., Solovyeva S.N., Minigalieva I.A., Gurvich V.B., Valamina I.E., Makeyev O.H., ShurV.Ya., Shishkina E.V. [et al.]. Toxic effects of low-level long-term inhalation exposures of rats to nickel oxide nanoparticles. Int. J. Mol. Sci., 2019, vol. 20, no. 7, pp. 1778. DOI: 10.3390/ijms20071778
  37. Sutunkova M.P., Privalova L.I., Minigalieva I.A., Gurvich V.B., Panov V.G., Katsnelson B.A. The most important in-ferences from the Ekaterinburgnanotoxicology team's animal experiments assessing adverse health effects of metallic and metal oxide nanoparticles. Toxicol. Rep., 2018, vol. 5, pp. 363–376. DOI: 10.1016/j.toxrep.2018.03.008
  38. Cuevas A.K., Liberda E.N., Gillespie P.A., Allina J., Chen L.C. Inhaled nickel nanoparticles alter vascular reactivity in C57BL/6 mice. Inhal. Toxicol., 2010, vol. 22, suppl. 2, pp. 100–106. DOI: 10.3109/08958378.2010.521206
  39. Liberda E.N., Cuevas A.K., Qu Q., Chen L.C. The acute exposure effects of inhaled nickel nanoparticles on murine endothelial progenitor cells. Inhal. Toxicol., 2014, vol. 26, no. 10, pp. 588–597. DOI: 10.3109/08958378.2014.937882
  40. Kang G.S., Gillespie P.A., Gunnison A., Moreira A.L., Tchou-Wong K.-M., Chen L.-C. Long-term inhalation exposure to nickel nanoparticles exacerbated atherosclerosis in a susceptible mouse model. Environ. Health Perspect., 2011, vol. 119, no. 2, pp. 176–181. DOI: 10.1289/ehp.1002508
  41. Dumala N., Mangalampalli B., Chinde S., Kumari S.I., Mahoob M., Rahman M.F., Grover P. Genotoxicity study of nickel oxide nanoparticles in female Wistar rats after acute oral exposure. Mutagenesis, 2017, vol. 32, no. 4, pp. 417–427. DOI: 10.1093/mutage/gex007
  42. Dumala N., Mangalampalli B., Kamal S.S.K., Grover P. Biochemical alterations induced by nickel oxide nanoparticles in female Wistar albino rats after acute oral exposure. Biomarkers, 2018, vol. 23, no. 1, pp. 33–43. DOI: 10.1080/1354750X.2017.1360943
  43. Dumala N., Mangalampalli B., Kamal S.S.K., Grover P. Repeated oral dose toxicity study of nickel oxide nanoparticles in Wistar rats: a histological and biochemical perspective. J. Appl. Toxicol., 2019, vol. 39, no. 7, pp. 1012–1029. DOI: 10.1002/jat.3790
  44. Kong L., Gao X., Zhu J., Cheng K., Tang M. Mechanisms involved in reproductive toxicity caused by nickel nanopar-ticle in female rats. Environ. Toxicol., 2016, vol. 31, no. 11, pp. 1674–1683. DOI: 10.1002/tox.22288
  45. Kong L., Hu W., Lu C., Cheng K., Tang M. Mechanisms underlying nickel nanoparticle induced reproductive toxicity and chemo-protective effects of vitamin C in male rats. Chemosphere, 2019, vol. 218, pp. 259–265. DOI: 10.1016/j.chemosphere.2018.11.128
  46. Saquib Q., Attia S.M., Ansari S.M., Al-Salim A., Faisal M., Alatar A.A., Musarrat J., Zhang X., Al-Khedhairy A.A. p53, MAPKAPK-2 and caspases regulate nickel oxide nanoparticles induce cell death and cytogenetic anomalies in rats. Int. J. Biol. Macromol, 2017, vol. 105, pt. 1, pp. 228–237. DOI: 10.1016/j.ijbiomac.2017.07.032
  47. Ali A.A.-M. Evaluation of some biological, biochemical, and hematological aspects in male albino rats after acute ex-posure to the nano-structured oxides of nickel and cobalt. Environ. Sci. Pollut. Res. Int., 2019, vol. 26, no. 17, pp. 17407–17417. DOI: 10.1007/s11356-019-05093-2
  48. Hansen T., Clermont G., Alves A., Eloy R., Brochhausen C., Boutrand J.P., Gatti A.M., Kirkpatrick C.J. Biological tolerance of different materials in bulk and nanoparticulate form in a rat model: sarcoma development by nanoparticles. J. R. Soc. Interface, 2006, vol. 3, pp. 767–775.
  49. Salnikow K., Zhitkovich A. Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic, and chromium. Chem. Res. Toxicol., 2008, vol. 21, no. 1, pp. 28–44. DOI: 10.1021/tx700198a
  50. Muñoz A., Costa M. Elucidating the mechanisms of nickel compound uptake: a review of particulate and nano-nickel endocytosis and toxicity. Toxicol. Appl. Pharmacol., 2012, vol. 260, no. 1, pp. 1–16. DOI: 10.1016/j.taap.2011.12.014
  51. Borowska S., Brzóska M.M. Metals in cosmetics: implications for human health. J. Appl. Toxicol., 2015, vol. 35, no. 6, pp. 551–752. DOI: 10.1002/jat.3129
  52. Lee S., Hwang S.-H., JeongJi., Han Y., Kim S.-H., Lee D.-K., Lee H.-S., Chung S.-T. [et al.]. Nickel oxide nanoparticles can recruit eosinophils in the lungs of rats by the direct release of intracellular eotaxin. Part. Fibre. Toxicol., 2016, vol. 13, no. 1, pp. 30. DOI: 10.1186/s12989-016-0142-8
  53. Glista-Baker E.E., Taylor A.J., Sayers B.C., Thompson E.A., Bonner J.C. Nickel nanoparticles cause exaggerated lung and airway remodeling in mice lacking the T-box transcription factor, TBX21, T-bet. Part. Fibre. Toxicol., 2014, vol. 11, pp. 7. DOI: 10.1186/1743-8977-11-7
  54. Roach K.A., Anderson S.E., Stefaniak A.B., Shane H.L., Kodali V., Kashon M., Roberts J.R. Surface area- and mass-based comparison of fine and ultrafine nickel oxide lung toxicity and augmentation of allergic response in an ovalbumin asthma model. Inhal. Toxicol., 2019, vol. 31, no. 8, pp. 299–324. DOI: 10.1080/08958378.2019.1680775
  55. Hirai T., Yoshioka Y., Izumi N., Ichihashi K.-I., Handa T., Nishijima N., Uemura E., Sagami K.-I. [et al.]. Metal na-noparticles in the presence of lipopolysaccharides trigger the onset of metal allergy in mice. Nat. Nanotechnol., 2016, vol. 11, no. 9, pp. 808–816. DOI: 10.1038/nnano. 2016.88
  56. Hu W., Yu Z., Gao X., Wu Y., Tang M., Kong Lu. Study on the damage of sperm induced by nickel nanoparticle ex-posure. Environ. Geochem. Health, 2020, vol. 42, no. 6, pp. 1715–1724. DOI: 10.1007/s10653-019-00364-w
  57. Fan X.-J., Yu F.-B., Gu H.-M., You L.-M., Du Z.-H., Gao J.-X., Niu Y.-Y. Impact of subchronic exposure to low-dose nano-nickel oxide on the reproductive function and offspring of male rats. Zhonghua Nan Ke Xue, 2019, vol. 25, no. 5, pp. 392–398.
  58. Iannitti T., Capone S., Gatti A., Capitani F., Cetta F., Palmieri B. Intracellular heavy metal nanoparticle storage: pro-gressive accumulation within lymph nodes with transformation from chronic inflammation to malignancy. Int. J. Nanomed., 2010, vol. 5, pp. 955–960. DOI: 10.2147/ijn.S14363
  59. Journeay W.S., Goldman R.H. Occupational handling of nickel nanoparticles: a case report. Am. J. Industrial Med., 2014, vol. 57, no. 9, pp. 1073–1076. DOI: 10.1002/ajim.22344
  60. Phillips J., Green F., Davies J.C.A., Murray J. Pulmonary and systemic toxicity following exposure to nickel nanopar-ticles. Am. J. Industrial Med., 2010, vol. 53, no. 8, pp. 763–767. DOI: 10.1002/ajim.20855
  61. OnishchenkoG.G., Tutel'yanV.A., GmoshinskiiI.V., Khotimchenko S.A.Development of the system for nanomaterials and nanotechnology safety in Russian Federation. Gigienaisanitariya, 2013, no. 1, pp. 4–11 (in Russian).
Received: 
07.04.2021
Accepted: 
27.07.2021
Published: 
30.09.2021

You are here