Assessing risks caused by nickel-containing nanomaterials: Hazard characterization in vivo
I.V. Gmoshinski1, S.A. Khotimchenko1,2
1 Federal Research Centre of Nutrition, Biotechnology and Food Safety, 2/14 Ustinsky lane, Moscow, 109240, Russian Federation
2 I.M. Sechenov First Moscow State Medical University, 2 Bldg., 8 Trubetskaya Str., Moscow, 119991, Russian Federation
Nanoparticles (NP) of nickel (Ni) and its compounds are promising materials for being used as catalysts in chemical, pharmaceutical and food industry; as construction materials in electronics and optoelectronics, in manufacturing current sources, medications, diagnostic preparations, and pesticides. Annual production volumes for these materials in their nanoform are equal to dozen tons and are expected to growth further. According to data obtained via multiple research nanoforms of Ni and its compounds are toxic to many types of cells; stimulate apoptosis; and can induce malignant transformation in vitro. It indicates that this group of nanomaterials can possibly be hazardous for human health. Risk assessment includes such a necessary stage as quantitative hazard characterization, that is, establishing toxic and maximum no-observed-adverse-effect levels (NOAEL) for a nanomaterial that penetrates into a body via inhalation, through undamaged skin, or the gastrointestinal tract. Experiments in vivo performed on laboratory animals with Ni-containing materials revealed overall toxic effects; toxicity to specific organs (including hepatoxoticity and cardiotoxicity); atherogenic, allergenic, and immune-toxic effects, as well as reproductive toxicity. There are multiple available data indicating that all Ni-containing nanomaterials are genotoxic and mutagenic, though data on their carcinogenic potential are rather scarce. Factors that determine toxicity of Ni and its compounds in nanoform are their ability to penetrate through biological barriers and to release free Ni++ ions in biological media.
The review focuses on analyzing and generalizing data on toxicity signs in vivo and effective toxic doses under various introductions of Ni and its compounds in nanoform into a body over a period starting predominantly from 2011.
- Gomes S.I.L., Roca C.P., Scott-Fordsmand J.J., Amorim M.J.B. High-throughput transcriptomics: insights into the pathways involved in (nano) nickel toxicity in a key invertebrate test species. Environ. Pollut, 2019, vol. 245, pp. 131–140. DOI: 10.1016/j.envpol.2018.10.123
- Katsnelson B., Privalova L., Sutunkova M.P., Gurvich V. B., Loginova N.V., MinigalievaI.A., Kireyeva E.P., Shur V.Y. [et al.]. Some inferences from in vivo experiments with metal and metal oxide nanoparticles: the pulmonary phagocytosis response, subchronic systemic toxicity and genotoxicity, regulatory proposals, searching for bioprotectors , a self-overview. Int. J. Nanomed., 2015, vol. 10, pp. 3013–3029. DOI: 10.2147/IJN.S80843
- Magaye R., Zhao J. Recent progress in studies of metallic nickel and nickel-based nanoparticles' genotoxicity and car-cinogenicity. Environ. Toxicol. Pharmacol, 2012, vol. 34, no. 3, pp. 644–650. DOI: 10.1016/j.etap.2012.08.012
- Ali A., Suhail M., Mathew S., Shah M.A., Harakeh S.M., Ahmad S., Kazmi Z., Alhamdan M.A.R. [et al.] Nanomaterial induced immune responses and cytotoxicity. J. Nanosci. Nanotechnol., 2016, vol. 16, no. 1, pp. 40–57. DOI: 10.1166/jnn.2016.10885
- Kornick R., Zug K.A. Nickel. Dermatitis, 2008, vol. 19, pp. 3–8.
- Magaye R.R., Yue X., Zou B., Shi H., Yu H., Liu K., Lin X., Xu J. [et al.]. Acute toxicity of nickel nanoparticles in rats after intravenous injection. Int. J. Nanomed., 2014, vol. 9, pp. 1393–1402. DOI:10.2147/ijn.S56212
- Marzban A., Seyedalipour B., Mianabady M., Taravati A., Hoseini S.M. Biochemical, toxicological, and histopatholog-ical outcome in rat brain following treatment with NiO and NiO nanoparticles. Biol.Trace Elem. Res., 2020, vol. 196, no. 2, pp. 528–536. DOI: 10.1007/s12011-019-01941-x
- Katsnelson B.A., Minigaliyeva I.A., Panov V.G., Privalova L.I., Varaksin A.N., Gurvich V.B., Sutunkova M.P., ShurV.Ya. [et al.]. Some patterns of metallic nanoparticles' combined subchronic toxicity as exemplified by a combination of nickel and manganese oxide nanoparticles. Food Chem. Toxicol., 2015, vol. 86, pp. 351–364. DOI: 10.1016/j.fct.2015.11.012
- Hussain M.F., Ashiq M.N., Gulsher M., Akbar A., Iqbal F. Exposure to variable doses of nickel oxide nanoparticles disturbs serum biochemical parameters and oxidative stress biomarkers from vital organs of albino mice in a sex-specific manner. Biomarkers, 2020, vol. 25, no. 8, pp. 719–724. DOI: 10.1080/1354750X.2020.1841829
- Iqbal S., Jabeen F., Peng C., Ijaz M.U., Chaudhry A.S. Cinnamomum cassia ameliorates Ni-NPs-induced liver and kidney damage in male Sprague Dawleyrats. Hum. Exp. Toxicol., 2020, vol. 39, no. 11, pp. 1565–1581. DOI: 10.1177/0960327120930125
- Nishi K., Morimoto Y., Ogami A., Murakami M., Myojo T., Oyabu T., Kadoya C., Yamamoto M. [et al.]. Expression of cytokine-induced neutrophil chemoattractant in rat lungs by intratracheal instillation of nickel oxide nanoparticles. Inhal. Toxicol., 2009, vol. 21, no. 12, pp. 1030–1039. DOI: 10.1080/08958370802716722
- Morimoto Y., Hirohashi M., Ogami A., Oyabu T., Myojo T., Hashiba M., Mizuguchi Y., Kambara T. [et al.]. Expres-sion of cytokine-induced neutrophil chemoattractant in rat lungs following an intratracheal instillation of micron-sized nickel oxide nanoparticle agglomerate. Toxicol. Industrial. Health, 2014, vol. 30, no. 9, pp. 851–860. DOI: 10.1177/0748233712464807
- Morimoto Y., Ogami A., Todoroki M., Yamamoto M., Murakami M., Hirohashi M., Oyabu T., Myojo T. [et al.]. Ex-pression of inflammation-related cytokines following intratracheal instillation of nickel oxide nanoparticles. Nanotoxicology, 2010, vol. 4, no. 2, pp. 161–176. DOI: 10.3109/17435390903518479
- Shinohara N., Zhang G., Oshima Y., Kobayashi T., Imatanaka N., Nakai M., Sasaki T., Kawaguchi K., Gamo M. Ki-netics and dissolution of intratracheally administered nickel oxide nanomaterials in rats. Part. Fibre. Toxicol., 2017, vol. 14, no. 1, pp. 48. DOI: 10.1186/s12989-017-0229-x
- Nishi K.-I., Kadoya C., Ogami A., Oyabu T., Morimoto Y., Ueno S., Myojo T. Changes over time in pulmonary in-flammatory response in rat lungs after intratracheal instillation of nickel oxide nanoparticles. J. Occup. Health, 2020, vol. 62, no. 1, pp. e12162. DOI: 10.1002/1348-9585.12162
- Sager T., Wolfarth M., Keane M., Porter D., Castranova V., Holian A. Effects of nickel-oxide nanoparticle pre-exposure dispersion status on bioactivity in the mouse lung. Nanotoxicology, 2016, vol. 10, no. 2, pp. 151–161. DOI: 10.3109/17435390.2015.1025883
- Cao Z., Fang Yi., Lu Y., Qian F., Ma Q., He M., Pi H., Yu Z., Zhou Z. Exposure to nickel oxide nanoparticles induces pulmonary inflammation through NLRP3 inflammasome activation in rats. Int. J. Nanomedicine, 2016, vol. 11, pp. 3331–3346. DOI: 10.2147/IJN.S106912
- Magaye R., Gu Y., Wang Y., Su H., Zhou Q., Mao G., Shi H., Yue X., Zou B. [et al.]. In vitro and in vivo evaluation of the toxicities induced by metallic nickel nano and fine particles. J. Mol. Histol, 2016, vol. 47, no. 3,pp. 273–286. DOI: 10.1007/s10735-016-9671-6
- Bai K.-J., Chuang K.-J., Chen J.-K., Hua H.-E., Shen Y.-L., Liao W.-N., Lee C.-H., Chen K.-Y. [et al.]. Investigation into the pulmonary inflammopathologyof exposure to nickel oxide nanoparticles in mice. Nanomedicine, 2018, vol. 14, no. 7, pp. 2329–2339. DOI: 10.1016/j.nano. 2017.10.003
- Oyabu T., Myojo T., Lee B.-W., Okada T., Izumi H., Yoshiura Y., Tomonaga T., Li Y.-S. [et al.].Biopersistence of NiO and TiO2 nanoparticles following intratracheal instillation and inhalation. Int. J. Mol. Sci., 2017, vol. 18, no. 12, pp. 2757. DOI: 10.3390/ijms18122757
- Mo Y., Zhang Y., Mo L., Wan R., Jiang M., Zhang Q. The role of miR-21 in nickel nanoparticle-induced MMP-2 and MMP-9 production in mouse primary monocytes: in vitro and in vivo studies. Environ. Pollut., 2020, vol. 267, pp. 115597. DOI: 10.1016/j.envpol.2020.115597
- Mo Y., Zhang Y., Wan R., Jiang M., Xu Y., Zhang Q. miR-21 mediates nickel nanoparticle-induced pulmonary injury and fibrosis. Nanotoxicology, 2020, vol. 14, no. 9, pp. 1175–1197. DOI: 10.1080/17435390.2020.1808727
- Mo Y., Jiang M., Zhang Y., Wan R., Li J., Zhong C.-J., Li H., Tang S., Zhang Q. Comparative mouse lung injury by nickel nanoparticles with differential surface modification. J. Nanobiotechnology, 2019, vol. 17, no. 1, pp. 2. DOI: 10.1186/s12951-018-0436-0
- Senoh H., Kano H., Suzuki M., Fukushima S., Oshima Y., Kobayashi T., Morimoto Y., Izumi H. [et al.]. Inter-laboratory comparison of pulmonary lesions induced by intratracheal instillation of NiO nanoparticle in rats: histopathological examination results. J. Occup. Health, 2020, vol. 62, no. 1, pp. e12117. DOI: 10.1002/1348-9585.12117
- Senoh H., Kano H., Suzuki M., Ohnishi M., Kondo H., Takanobu K., Umeda Y., Aiso S., Fukushima S. Comparison of single or multiple intratracheal administration for pulmonary toxic responses of nickel oxide nanoparticles in rats. J. Occup. Health, 2017, vol. 59, no. 2, pp. 112–121. DOI: 10.1539/joh.16-0184-OA
- Chang X., Liu F., Tian M., Zhao H., Han A., Sun Y. Nickel oxide nanoparticles induce hepatocyte apoptosis via activating endoplasmic reticulum stress pathways in rats. Environ. Toxicol., 2017, vol. 32, no. 12, pp. 2492–2499. DOI: 10.1002/tox.22492
- Chang X.H., Zhu A., Liu F.F., Zou L.Y., Su L., Liu S.K., Zhou H.H., Sun Y.Y. [et al.]. Nickel oxide nanoparticles in-duced pulmonary fibrosis via TGF-1 activation in rats. Hum. Exp. Toxicol., 2017, vol. 36, no. 8, pp. 802–812. DOI: 10.1177/0960327116666650
- Liu S., Zhu A., Chang X., Sun Y., Zhou H., Sun Y., Zou L., Sun Y., Su L. Role of nitrative stress in nano nickel oxide-induced lung injury in rats. Wei Sheng Yan Jiu, 2016, vol. 45, no. 4, pp. 563–567 (in Chinese).
- Chang X., Zhu A., Liu F., Zou L., Su L., Li S., Sun Y. Role of NF-B activation and Th1/Th2 imbalance in pulmonary toxicity induced by nanoNiO. Environ. Toxicol., 2017, vol. 32, no. 4, pp. 1354–1362. DOI: 10.1002/tox.22329
- Yu S., Liu F., Wang C., Zhang J., Zhu A., Zou L., Han A., Li J. [et al.]. Role of oxidative stress in liver toxicity induced by nickel oxide nanoparticles in rats. Mol. Med. Rep., 2018, vol. 17, no. 2, pp. 3133–3139. DOI: 10.3892/mmr.2017.8226
- You D.J., Lee H.Y., Taylor-Just A.J., Linder K.E., Bonner J.C. Sex differences in the acute and subchronic lung in-flammatory responses of mice to nickel nanoparticles. Nanotoxicology, 2020, vol. 14, no. 8, pp. 1058–1081. DOI: 10.1080/17435390.2020.1808105
- Zhang Q., Chang X., Wang H., Liu Y., Wang X., Wu M., Zhan H., Li S., Sun Y. TGF-β1 mediated Smad signaling path-way and EMT in hepatic fibrosis induced by Nano NiO in vivo and in vitro. Environ. Toxicol., 2020, vol. 35, no. 4, pp. 419–429. DOI: 10.1002/tox.22878
- Mizuguchi Y., Myojo T., Oyabu T., Hashiba M., Lee B.W., Yamamoto M., Todoroki M., Nishi K. [et al.]. Compari-son of dose-response relations between 4-week inhalation and intratracheal instillation of NiO nanoparticles using polimorpho-nuclear neutrophils in bronchoalveolar lavage fluid as a biomarker of pulmonary inflammation. Inhal. Toxicol., 2013, vol. 25, no. 1, pp. 29–36. DOI: 10.3109/08958378.2012.751470
- Horie M., Yoshiura Y., Izumi H., Oyabu T., Tomonaga T., Okada T., Lee B.-W., Myojo T. [et al.]. Comparison of the pulmonary oxidative stress caused by intratracheal instillation and inhalation of NiO nanoparticles when equivalent amounts of NiO are retained in the lung. Antioxidants (Basel), 2016, vol. 5, no. 1, pp. 4. DOI: 10.3390/antiox5010004
- Kadoya C., Lee B.-W., Ogami A., Oyabu T., Nishi K.-I., Yamamoto M., Todoroki M., Morimoto Y. [et al.]. Analysis of pulmonary surfactant in rat lungs after inhalation of nanomaterials: fullerenes, nickel oxide and multi-walled carbon nanotubes. Nanotoxicology, 2016, vol. 10, no. 2, pp. 194–203. DOI: 10.3109/17435390.2015.1039093
- Sutunkova M.P., Solovyeva S.N., Minigalieva I.A., Gurvich V.B., Valamina I.E., Makeyev O.H., ShurV.Ya., Shishkina E.V. [et al.]. Toxic effects of low-level long-term inhalation exposures of rats to nickel oxide nanoparticles. Int. J. Mol. Sci., 2019, vol. 20, no. 7, pp. 1778. DOI: 10.3390/ijms20071778
- Sutunkova M.P., Privalova L.I., Minigalieva I.A., Gurvich V.B., Panov V.G., Katsnelson B.A. The most important in-ferences from the Ekaterinburgnanotoxicology team's animal experiments assessing adverse health effects of metallic and metal oxide nanoparticles. Toxicol. Rep., 2018, vol. 5, pp. 363–376. DOI: 10.1016/j.toxrep.2018.03.008
- Cuevas A.K., Liberda E.N., Gillespie P.A., Allina J., Chen L.C. Inhaled nickel nanoparticles alter vascular reactivity in C57BL/6 mice. Inhal. Toxicol., 2010, vol. 22, suppl. 2, pp. 100–106. DOI: 10.3109/08958378.2010.521206
- Liberda E.N., Cuevas A.K., Qu Q., Chen L.C. The acute exposure effects of inhaled nickel nanoparticles on murine endothelial progenitor cells. Inhal. Toxicol., 2014, vol. 26, no. 10, pp. 588–597. DOI: 10.3109/08958378.2014.937882
- Kang G.S., Gillespie P.A., Gunnison A., Moreira A.L., Tchou-Wong K.-M., Chen L.-C. Long-term inhalation exposure to nickel nanoparticles exacerbated atherosclerosis in a susceptible mouse model. Environ. Health Perspect., 2011, vol. 119, no. 2, pp. 176–181. DOI: 10.1289/ehp.1002508
- Dumala N., Mangalampalli B., Chinde S., Kumari S.I., Mahoob M., Rahman M.F., Grover P. Genotoxicity study of nickel oxide nanoparticles in female Wistar rats after acute oral exposure. Mutagenesis, 2017, vol. 32, no. 4, pp. 417–427. DOI: 10.1093/mutage/gex007
- Dumala N., Mangalampalli B., Kamal S.S.K., Grover P. Biochemical alterations induced by nickel oxide nanoparticles in female Wistar albino rats after acute oral exposure. Biomarkers, 2018, vol. 23, no. 1, pp. 33–43. DOI: 10.1080/1354750X.2017.1360943
- Dumala N., Mangalampalli B., Kamal S.S.K., Grover P. Repeated oral dose toxicity study of nickel oxide nanoparticles in Wistar rats: a histological and biochemical perspective. J. Appl. Toxicol., 2019, vol. 39, no. 7, pp. 1012–1029. DOI: 10.1002/jat.3790
- Kong L., Gao X., Zhu J., Cheng K., Tang M. Mechanisms involved in reproductive toxicity caused by nickel nanopar-ticle in female rats. Environ. Toxicol., 2016, vol. 31, no. 11, pp. 1674–1683. DOI: 10.1002/tox.22288
- Kong L., Hu W., Lu C., Cheng K., Tang M. Mechanisms underlying nickel nanoparticle induced reproductive toxicity and chemo-protective effects of vitamin C in male rats. Chemosphere, 2019, vol. 218, pp. 259–265. DOI: 10.1016/j.chemosphere.2018.11.128
- Saquib Q., Attia S.M., Ansari S.M., Al-Salim A., Faisal M., Alatar A.A., Musarrat J., Zhang X., Al-Khedhairy A.A. p53, MAPKAPK-2 and caspases regulate nickel oxide nanoparticles induce cell death and cytogenetic anomalies in rats. Int. J. Biol. Macromol, 2017, vol. 105, pt. 1, pp. 228–237. DOI: 10.1016/j.ijbiomac.2017.07.032
- Ali A.A.-M. Evaluation of some biological, biochemical, and hematological aspects in male albino rats after acute ex-posure to the nano-structured oxides of nickel and cobalt. Environ. Sci. Pollut. Res. Int., 2019, vol. 26, no. 17, pp. 17407–17417. DOI: 10.1007/s11356-019-05093-2
- Hansen T., Clermont G., Alves A., Eloy R., Brochhausen C., Boutrand J.P., Gatti A.M., Kirkpatrick C.J. Biological tolerance of different materials in bulk and nanoparticulate form in a rat model: sarcoma development by nanoparticles. J. R. Soc. Interface, 2006, vol. 3, pp. 767–775.
- Salnikow K., Zhitkovich A. Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic, and chromium. Chem. Res. Toxicol., 2008, vol. 21, no. 1, pp. 28–44. DOI: 10.1021/tx700198a
- Muñoz A., Costa M. Elucidating the mechanisms of nickel compound uptake: a review of particulate and nano-nickel endocytosis and toxicity. Toxicol. Appl. Pharmacol., 2012, vol. 260, no. 1, pp. 1–16. DOI: 10.1016/j.taap.2011.12.014
- Borowska S., Brzóska M.M. Metals in cosmetics: implications for human health. J. Appl. Toxicol., 2015, vol. 35, no. 6, pp. 551–752. DOI: 10.1002/jat.3129
- Lee S., Hwang S.-H., JeongJi., Han Y., Kim S.-H., Lee D.-K., Lee H.-S., Chung S.-T. [et al.]. Nickel oxide nanoparticles can recruit eosinophils in the lungs of rats by the direct release of intracellular eotaxin. Part. Fibre. Toxicol., 2016, vol. 13, no. 1, pp. 30. DOI: 10.1186/s12989-016-0142-8
- Glista-Baker E.E., Taylor A.J., Sayers B.C., Thompson E.A., Bonner J.C. Nickel nanoparticles cause exaggerated lung and airway remodeling in mice lacking the T-box transcription factor, TBX21, T-bet. Part. Fibre. Toxicol., 2014, vol. 11, pp. 7. DOI: 10.1186/1743-8977-11-7
- Roach K.A., Anderson S.E., Stefaniak A.B., Shane H.L., Kodali V., Kashon M., Roberts J.R. Surface area- and mass-based comparison of fine and ultrafine nickel oxide lung toxicity and augmentation of allergic response in an ovalbumin asthma model. Inhal. Toxicol., 2019, vol. 31, no. 8, pp. 299–324. DOI: 10.1080/08958378.2019.1680775
- Hirai T., Yoshioka Y., Izumi N., Ichihashi K.-I., Handa T., Nishijima N., Uemura E., Sagami K.-I. [et al.]. Metal na-noparticles in the presence of lipopolysaccharides trigger the onset of metal allergy in mice. Nat. Nanotechnol., 2016, vol. 11, no. 9, pp. 808–816. DOI: 10.1038/nnano. 2016.88
- Hu W., Yu Z., Gao X., Wu Y., Tang M., Kong Lu. Study on the damage of sperm induced by nickel nanoparticle ex-posure. Environ. Geochem. Health, 2020, vol. 42, no. 6, pp. 1715–1724. DOI: 10.1007/s10653-019-00364-w
- Fan X.-J., Yu F.-B., Gu H.-M., You L.-M., Du Z.-H., Gao J.-X., Niu Y.-Y. Impact of subchronic exposure to low-dose nano-nickel oxide on the reproductive function and offspring of male rats. Zhonghua Nan Ke Xue, 2019, vol. 25, no. 5, pp. 392–398.
- Iannitti T., Capone S., Gatti A., Capitani F., Cetta F., Palmieri B. Intracellular heavy metal nanoparticle storage: pro-gressive accumulation within lymph nodes with transformation from chronic inflammation to malignancy. Int. J. Nanomed., 2010, vol. 5, pp. 955–960. DOI: 10.2147/ijn.S14363
- Journeay W.S., Goldman R.H. Occupational handling of nickel nanoparticles: a case report. Am. J. Industrial Med., 2014, vol. 57, no. 9, pp. 1073–1076. DOI: 10.1002/ajim.22344
- Phillips J., Green F., Davies J.C.A., Murray J. Pulmonary and systemic toxicity following exposure to nickel nanopar-ticles. Am. J. Industrial Med., 2010, vol. 53, no. 8, pp. 763–767. DOI: 10.1002/ajim.20855
- OnishchenkoG.G., Tutel'yanV.A., GmoshinskiiI.V., Khotimchenko S.A.Development of the system for nanomaterials and nanotechnology safety in Russian Federation. Gigienaisanitariya, 2013, no. 1, pp. 4–11 (in Russian).