COVID-19: neurological sequelae
P.S. Spencer1, G. Román2, A. Buguet3, A. Guekht4, J. Reis5
1Oregon Health & Science University, Portland, Oregon, 97201, USA
2Houston Methodist Hospital, 6560 Fannin Street, Houston, TX 77030, USA
3University Claude-Bernard Lyon-1, 43 Boulevard du 11 Novembre 1918, 69622, Villeurbanne, France
4Scientific and Practical Psychoneurological Center named after Z.P. Solovyov, 43 Donskaya Str., 115419, Moscow, Russian Federation
5Université de Strasbourg, 67000 Strasbourg, France and Association RISE, 67205 Oberhausbergen, France
COVID-19, the human primarily respiratory disease caused by the coronavirus SARS-CoV-2, commonly involves the nervous system, the effects of which may persist for many months. Post-acute sequelae of COVID-19 include relapsing and remitting neurological and neuropsychiatric symptoms that can affect children and adults, including those who had mild acute illness. Since longer-term adverse effects on the central and peripheral nervous system of COVID-19 cannot be excluded, patient and societal health trends should be monitored going forward. Urgent present needs include not only global immunization against SARS-CoV-2 but also the reestablishment of lapsed mass vaccination programs to prevent resurgence of other viral diseases (e.g., measles, polio) that can impact the nervous system.
- Andersen K.G., Rambaut A., Lipkin W.I., Holmes E.C., Garry R.F. The proximal origin of SARS-CoV-2. Nat Med, 2020, vol. 26, no. 4, pp. 450–452. DOI: 10.1038/s41591-020-0820-9
- Lawrence S.V. COVID-19 and China: A Chronology of Events (December 2019-January 2020). USA, Congressional Research Service Publ., 2020, 47 p.
- Lu D. The hunt to find the coronavirus pandemic's patient zero. New Sci, 2020, vol. 4, no. 245, pp. 9. DOI: 10.1016/S0262-4079(20)30660-6
- Pekar J., Worobey M., Moshiri N., Scheffler K., Wertheim J.O. Timing the SARS-CoV-2 index case in Hubei Province. Science, 2021, no. 372, pp. 412–417. DOI: 10.1126/science.abf8003
- Platto S., Wang Y., Zhou J., Carafoli E. History of the COVID-19 pandemic: Origin, explosion, worldwide spreading. Biochem Biophys Res Commun, 2021, no. 538, pp. 14–23. DOI: 10.1016/j.bbrc.2020.10.087
- Platto S., Xue T., Carafoli E. COVID19: an announced pandemic. Cell Death Dis, 2020, no. 11, pp. 799. DOI: 10.1038/s41419-020-02995-9
- Zaheer A. The first 50 days of COVID-19: A detailed chronological timeline and extensive review of literature documenting the pandemic. Surveying the COVID-19 Pandemic and its implications, 2020, pp. 1–7. DOI: 10.1016/B978-0-12-824313-8.00001-2
- Fan Y., Zhao K., Shi Z.L., Zhou P. Bat coronaviruses in China. Viruses, 2019, vol. 11, no. 3, pp. 210. DOI: 10.3390/v1103021
- Chen R., Wang K., Yu J., Howard D., French L., Chen Z., Wen C., Xu Z. The spatial and cell-type distribution of SARS-CoV-2 Receptor ACE2 in the human and mouse brains. Front Neurol, 2021, vol. 20, no. 11, pp. 573095. DOI: 10.3389/fneur.2020.573095
- Fenrich M., Mrdenovic S., Balog M., Tomic S., Zjalic M., Roncevic A., Mandic D., Debeljak Z., Heffer M. SARS-CoV-2 dissemination through peripheral nerves explains multiple organ injury. Front Cell Neurosci, 2020, vol. 5, no. 14, pp. 229. DOI: 10.3389/fncel.2020.00229
- Holappa M., Vapaatalo H., Vaajanen A. Many faces of renin-angiotensin system – focus on eye. Open Ophthalmol J, 2017, no. 11, pp. 122–142. DOI: 10.2174/1874364101711010122
- Higaki A., Mogi M., Iwanami J., Min L.‐J., Bai H.‐Y., Shan B.‐S., Kukida M., Yamauchi T. [et al.]. Beneficial Effect of Mas Receptor Deficiency on Vascular Cognitive Impairment in the Presence of Angiotensin II Type 2 Receptor. J Am Heart Assoc, 2018, vol. 7, no. 3, pp. e008121. DOI: 10.1161/JAHA.117.008121
- Salamanna F., Maglio M., Landini M.P., Fini M. Body localization of ACE-2: On the trail of the keyhole of SARS-CoV-2. Front Med (Lausanne), 2020, vol. 3, no. 7, pp. 594495. DOI: 10.3389/fmed.2020.594495
- Wang X.L., Iwanami J., Min L.J., Tsukuda K., Nakaoka H., Bai H.-Y., Shan B.-S., Kan-No H. [et al.]. Deficiency of angiotensin-converting enzyme 2 causes deterioration of cognitive function. NPJ Aging Mech Dis, 2016, vol. 20, no. 2, pp. 16024. DOI: 10.1038/npjamd.2016.24
- Kirillov Y., Timofeev S., Avdalyan A., Nikolenko V.N., Gridin L., Sinelnikov M.Y. Analysis of risk actors in COVID-19 adult mortality in Russia. J Prim Care Community Health, 2021, vol. 12, pp. 21501327211008050. DOI: 10.1177/21501327211008050
- Sanyaolu A., Okorie C., Marinkovic A., Patidar R., Younis K., Desai P., Hosein Z., Padda I. [et al.]. Comorbidity and its impact on patients with COVID-19. SN Compr Clin Med, 2020, vol. 25, pp. 1–8. DOI: 10.1007/s42399-020-00363-4
- Verdecchia P., Cavallini C., Spanevello A., Fabio A. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. Eur J Intern Med, 2020, vol. 76, pp. 14–20. DOI: 10.1016/j.ejim.2020.04.037
- Erickson M.A., Rhea E.M., Knopp R.C., Banks W.A. Interactions of SARS-CoV-2 with the blood-brain barrier. Int J Mol Sci, 2021, vol. 6, no. 22 (5), pp. 2681. DOI: 10.3390/ijms22052681
- Alomari S., Abou-Mrad Z., Bydon A. COVID-19 and the central nervous system. Clin Neurol Neurosurg, 2020, vol. 198, pp. 106116. DOI: 10.1016/j.clineuro.2020.106116
- Ellul M.A., Benjamin L., Singh B., Lant S., Michael B.D., Easton A., Kneen R., Defres S. [et al.]. Neurological associations of COVID-19. Lancet Neurol, 2020, vol. 19, no. 9, pp. 767–783. DOI: 10.1016/S1474-4422(20)30221-0
- El-Sayed A., Aleya L., Kamel M. COVID-19: a new emerging respiratory disease from the neurological perspective. Environ Sci Pollut Res Int, 2021, vol. 15, pp. 1–15. DOI: 10.1007/s11356-021-12969-9
- Liotta E.M., Batra A., Clark J.R., Shlobin N.A., Hoffman S.C., Orban Z.S., Koralnik I.J. [et al.]. Frequent neurologic manifestations and encephalopathy-associated morbidity in COVID-19 patients. Ann Clin Transl Neurol, 2020, vol. 7, no. 11, pp. 2221–2230. DOI: 10.1002/acn3.51210
- Nazari S., Azari Jafari A., Mirmoeeni S., Sadeghian S., Eghbal Heidari M., Sadeghian S., Assarzadegan F., Mahmoud Puormand S. [et al.]. Central nervous system manifestations in COVID-19 patients: A systematic review and meta-analysis. Brain Behav, 2021, pp. e02025. DOI: 10.1002/brb3.2025
- Perez D.L., Edwards M.J., Nielsen G., Kozlowska K., Hallett M., Curt LaFrance Jr. W. Decade of progress in motor functional neurological disorder: continuing the momentum. J Neurol Neurosurg Psychiatry, 2021, vol. 92, no. 6, pp. 668–667. DOI: 10.1136/jnnp-2020-323953
- Qi R., Chen W., Liu S., Thompson P.M., Zhang L.J., Xia F., Cheng F., Hong A. [et al.]. Psychological morbidities and fatigue in patients with confirmed COVID-19 during disease outbreak: prevalence and associated biopsychosocial risk factors. medRxiv, 2020, no. 11, pp. 1–21. DOI: 10.1101/2020.05.08.20031666
- Román G.C., Spencer P.S., Reis J., Buguet A., El Alaoui Faris M., Katrak S.M., Láinez M., Tulio Medina M. [et al.]. The neurology of COVID-19 revisited: A proposal from the Environmental Neurology Specialty Group of the World Federation of Neurology to implement international neurological registries. J Neurol Sci, 2020, vol. 15, no. 414, pp. 116884. DOI: 10.1016/j.jns.2020.116884
- Tan B.H., Liu J.M., Gui Y., Wu S., Suo J.-L., Li Y.-C. Neurological involvement in the respiratory manifestations of COVID-19 patients. Aging (Albany NY), 2021, vol. 14, no. 13 (3), pp. 4713–4730. DOI: 10.18632/aging.202665
- Wildwing T., Holt N. The neurological symptoms of COVID-19: a systematic overview of systematic reviews, comparison with other neurological conditions and implications for healthcare services. Ther Adv Chronic Dis, 2021, vol. 12, pp. 2040622320976979. DOI: 10.1177/2040622320976979
- Cabona C., Deleo F., Marinelli L., Audenino D., Arnaldi D., Rossi F., Di Giacomo R., Buffoni C. [et al.]. Epilepsy course during COVID-19 pandemic in three Italian epilepsy centers. Epilepsy Behav, 2020, vol. 112, pp. 107375. DOI: 10.1016/j.yebeh.2020.107375
- Rider F.K., Lebedeva A.V., Mkrtchyan V.R., Gekht A.B. Epilepsy and COVID-19: patient management and optimization of antiepileptic therapy during pandemic. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova, 2020, vol. 120, № 10, pp. 100–107 (in Russian).
- Singh B., Lant S., Cividini S., Cattrall J.W.S., Goodwin L., Benjamin L., Michael B., Khawaja A. [et al.]. Prognostic indicators and outcomes of hospitalised COVID-19 patients with neurological disease: A systematic review and individual patient data meta-analysis. Lancet, 2021, vol. 27, pp. 95. DOI: 10.21.2139/ssrn.3834310
- Azghandi M., Kerachian M.A. Detection of novel coronavirus (SARS-CoV-2) RNA in peripheral blood specimens. J Transl Med, 2020, no. 18, pp. 412. DOI: 10.1186/s12967-020-02589-1
- Lou J.J., Movassaghi M., Gordy D., Olson M.G., Zhang T., Khurana M.S., Chen Z., Perez-Rosendahl M. [et al.]. Neuropathology of COVID-19 (neuro-COVID): clinicopathological update. Free Neuropathol, 2021, vol. 2, no. 2. DOI: 10.17879/freeneuropathology-2021-2993
- Neumann B., Schmidbauer M.L., Dimitriadis K., Otto S., Knier B., Niesen W.-D., Hosp J.A., Günther A. [et al.]. Cerebrospinal fluid findings in COVID-19 patients with neurological symptoms. J Neurol Sci, 2020, vol. 15, no. 418, pp. 117090. DOI: 10.1016/j.jns.2020.117090
- Wang W., Xu Y., Gao R., Lu R., Han K., Wu G., Tan W. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA, 2020, vol. 12, no. 323 (18), pp. 1843–1844. DOI: 10.1001/jama.2020.3786
- Lee M.H., Perl D.P., Nair G., Li W., Maric D., Murray H., Dodd S.J., Koretsky A.P. [et al.]. Microvascular injury in the brains of patients with COVID-19. N Engl J Med, 2021, vol. 4, no. 384 (5), pp. 481–483. DOI: 10.1056/NEJMc2033369
- Matschke J., Lütgehetmann M., Hagel C., Sperhake J.P., Schröder A.S., Edler C., Mushumba H., Fitzek A. [et al.]. Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. Lancet Neurol, 2020, vol. 19, no. 11, pp. 919–929. DOI: 10.1016/S1474-4422(20)30308-2
- Brundin P., Nath A., Beckham J.D. Is COVID-19 a perfect storm for Parkinson's Disease? Trends Neurosci, 2020, no. 43, pp. 931–933. DOI: 10.1016/j.tins.2020.10.009
- Al-Aly Z., Xie Y., Bowe B. High-dimensional characterization of post-acute sequalae of COVID-19. Nature, 2021, vol. 594, no. 7862, pp. 259–264. DOI: 10.1038/s41586-021-03553-9
- Carfì A., Bernabei R., Landi F. for the Gemelli Against COVID-19 Post-Acute Care Study Group. Persistent symptoms in patients after acute COVID-19. JAMA, 2020, vol. 11, no. 324 (6), pp. 603–605. DOI: 10.1001/jama.2020.12603
- Miners S., Kehoe P.G., Love S. Cognitive impact of COVID-19: looking beyond the short term. Alzheimers Res Ther, 2020, no. 12, pp. 170. DOI: 10.1186/s13195-020-00744-w
- Román G.C., Gracia F., Torres A., Palacios A., Gracia K., Harris D. [et al.]. Acute Transverse Myelitis (ATM): Clinical review of 43 patients with COVID-19-associated ATM and 3 post-vaccination ATM serious adverse events with the ChAdOx1 nCoV-19 Vaccine (AZD1222). Front Immunol, 2021, vol. 26, no. 12, pp. 653786. DOI: 103389/fimmu.2021.653786
- Simon Junior H., Sakano T.M.S., Rodrigues R.M., Eisencraft A.P., Lemos de Carvalho V.E., Schvartsman C., da Costa Reis A.G.A. Multisystem inflammatory syndrome associated with COVID-19 from the pediatric emergency physician's point of view. J Pediatr (Rio J), 2021, vol. 97, no. 2, pp. 140–159. DOI: 10.1016/j.jped.2020.08.004
- Taquet M., Geddes J.R., Husain M., Luciano S., Harrison P.J. 6-month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: a retrospective cohort study using electronic health records. Lancet Psychiat, 2021, no. 8, pp. 416–427. DOI: 10.1016/s2215-0366(21)00084-5
- Munblit D., Bobkov P., Spiridonova E., Shikhaleva A., Gamirova A., Blyuss O., Nekliudov N., Bugaev P. [et al.]. Risk factors for long-term consequences of COVID-19 in hospitalized adults in Moscow using the ISARIC Global follow-up protocol: Stop COVID cohort study. medRxiv, 2021, no. 19, pp. 26. DOI: 10.1101/2021.02.17.21251895
- Torjeson I. Covid-19: Middle aged women face greater risk of debilitating long term symptoms. BMJ, 2021, no. 372, pp. n829. DOI: 10.1136/bmj.n829
- Baig A.M. Chronic COVID syndrome: Need for an appropriate medical terminology for long-COVID and COVID long-haulers. J Med Virol, 2021, no. 93, pp. 2555–2556. DOI: 10.1002/jmv.26624
- Fernández-de-Las-Peñas C., Palacios-Ceña D., Gómez-Mayordomo V., Cuadrado M.L., Florencio L.L. Defining Post-COVID Symptoms (Post-Acute COVID, Long COVID, Persistent Post-COVID): An integrative classification. Int J Environ Res Public Health, 2021, no. 18, pp. 2621. DOI: 10.3390/ijerph18052621
- Moldofsky H., Patcai J. Chronic widespread musculoskeletal pain, fatigue, depression and disordered sleep in chronic post-SARS syndrome; a case-controlled study. BMC Neurol, 2011, vol. 24, no. 11, pp. 37. DOI: 10.1186/1471-2377-11-37
- Dani M., Dirksen A., Taraborrelli P., Torocastro M., Panagopoulos D., Sutton R., Lim P.B. Autonomic dysfunction in ‘long COVID’: rationale, physiology and management strategies. Clin Med J, 2021, no. 21, pp. e63–e67. DOI: 10.7861/clinmed.2020-089
- Wijeratne T., Crewther S. Post-COVID 19 Neurological Syndrome (PCNS); a novel syndrome with challenges for the global neurology community. J Neurol Sci, 2020, no. 419, pp. 117179. DOI: 10.1016/j.jns.2020.117179
- Zhou L., Zhang M., Wang J., Gao J. Sars-Cov-2: Underestimated damage to nervous system. Travel Med Infect Dis, 2020, no. 36, pp. 101642. DOI: 10.1016/j.tmaid.2020.101642
- Hawkes C. Olfaction in neurodegenerative disorder. Adv Otorhinolaryngol, 2006, no. 63, pp. 133–151. DOI: 10.1159/000093759
- Kuo C.L., Pilling L.C., Atkins J.L., Masoli J.A.H., Delgado J., Kuchel G.A., Melzer D. APOE e4 Genotype predicts severe COVID-19 in the UK Biobank Community Cohort. J Gerontol A Biol Sci Med Sci, 2020, vol. 15, no. 75 (11), pp. 2231–2232. DOI: 10.1093/gerona/glaa131
- Wang C., Zhang M., Garcia Jr G., Tian E., Cui Q., Chen X., Sun G., Wang J. [et al.]. ApoE-isoform-dependent SARS-CoV-2 neurotropism and cellular response. Cell Stem Cell, 2021, no. 28, pp. 331–342.e5. DOI: 10.1016/j.stem.2020.12.018
- Gear J.S., Cassel G.A., Gear A.J., Trappler B., Clausen L., Meyers A.M., Kew M.C., Bothwell T.H. [et al.]. Outbreak of Marburg virus disease in Johannesburg. Br Med J, 1975, vol. 29, no. 4, pp. 489–493. DOI: 10.1136/bmj.4.5995.489
- Van Gelder R.N., Margolis T.P. Ebola and the ophthalmologist. Ophthalmology, 2015, no. 122, pp. 2152–2154. DOI: 10.1016/j.ophtha.2015.08.027
- Varkey J.B., Shantha J.G., Crozier I., Kraft C.S., Lyon G.M., Mehta A.K., Kumar G., Smith J.R. [et al.]. Persistence of Ebola Virus in ocular fluid during convalescence. N Engl J Med, 2015, no. 372, pp. 2423–2427. DOI: 10.1056/NEJMoa1500306
- Durrheim D.N., Andrus J.K., Tabassum S., Bashour H., Githanga D., Pfaff G. [et al.]. A dangerous measles future looms beyond the COVID-19 pandemic. Nat Med, 2021, vol. 27, no. 3, pp. 360–361. DOI: 10.1038/s41591-021-01237-5
- Fading measles immunity over time. Center for Infectious Disease Research and Policy. CIDRAP. Available at: https://www.cidrap.umn.edu/news-perspective/2020/09/news-scan-sep-02-2020 (03.04.2021).
- Harris R.C., Chen Y., Côte P., Ardillon A., Nievera M.C., Ong-Lim A., Aiyamperumal S., Chong C.P. [et al.]. Impact of COVID-19 on routine immunisation in South-East Asia and Western Pacific: Disruptions and solutions. Lancet Reg Health West Pac, 2021, no. 10, pp. 100140. DOI: 10.1016/j.lanwpc.2021.100140
- Ibrahim S.H., Amjad N., Saleem A.F., Chand P., Rafique A., Nuzhat K. Humayun The upsurge of SSPE--a reflection of national measles immunization status in Pakistan. J Trop Pediatr, 2014, vol. 60, no. 6, pp. 449–453. DOI: 10.1093/tropej/fmu050
- Desforges M., Le Coupanec A., Dubeau P., Bourgouin A., Lajoie L., Dubé M., Talbot P.J. Human coronaviruses and other respiratory viruses: Underestimated opportunistic pathogens of the central nervous system? Viruses, 2019, vol. 20, no. 12 (1), pp. 14. DOI: 10.3390/v12010014
- Dubé M., Le Coupanec A., Wong A.H.M., Rini J.M., Desforges M., Talbot P.J. Axonal transport enables neuron-to-neuron propagation of human coronavirus OC43. J Virol, 2018, vol. 16, no. 92 (17), pp. e00404-18. DOI: 10.1128/JVI.00404-18