Gut microbiota as risk factor causing obesity in children

View or download the full article: 

P.Yu. Petrova, A.D. Aga, E.S. Trapeznikova, E.V. Budanova


I.M. Sechenov First Moscow State Medical University, 8/1 Trubetskaya Str., Moscow, 119048, Russian Federation


Nowadays obesity resulting from abnormal or excessive fat deposits in a body has become a true epidemic. Risk factors that cause the disease include improper lifestyle, hereditary predisposition, as well as metabolic activity of gut microbiota. Research works performed over the last decades indicate that microbes that create colonies in human intestines play a significant role in maintaining proper metabolism. There is a correlation between disorders in gut microbiota structure and immune disorders, elevated susceptibility to infections, and obesity. There is more and more evidence that gut microbiota and its overall bacterial genome exert their influence on nutrients assimilation and regulate energy metabolism and fat accumulation.
Certain differences were detected in microbiota gut structure in children and adults with obesity and people with proper body mass index. Delivery and feeding are among key factors influencing gut microbiota formation in a child. Thus, research results indicate that natural birth, as opposed to cesarean section, can prevent obesity occurrence in a child. Breast-feeding also makes a substantial contribution into development of an infant since breast milk is balanced food that provides optimal metabolism in an infant’s body and helps creating proper gut microbiota. At the same time, according to data obtained via numerous research works, artificial feeding can be related to obesity occurrence in future.
Ways to fight obesity include medication therapy, dietary nutrition, physical activity as well as bariatric surgery; the latter is nowadays considered to be the most efficient procedure on the matter. Reduction in body mass via influencing gut microbiota is a promising trend in research in the sphere. Despite there are objective data on benign effects produced by probiotics and prebiotics on gut microbiota, experts haven’t been able to reach agreement on their efficiency yet.

obesity, gut microbiota, obesity in children, probiotics, prebiotics, Akkermansia muciniphila, feeding, delivery, nutrition habits
Petrova P.Yu., Aga A.D., Trapeznikova E.S., Budanova E.V. Gut microbiota as risk factor causing obesity in children. Health Risk Analysis, 2021, no. 1, pp. 159–172. DOI: 10.21668/health.risk/2021.1.17.eng
  1. Garabedian L.F., Ross-Degnan D., Wharam J.F. Mobile Phone and Smartphone Technologies for Diabetes Care and Self-Management. Current Diabetes Reports, 2015, vol. 15, no. 12, pp. 109. DOI: 10.1007/s11892-015-0680-8
  2. Davis C.D. The gut microbiome and its role in obesity. Nutr. Today, 2016, vol. 51, no. 4, pp. 167–174. DOI: 10.1097/NT.0000000000000167
  3. Davis H.C. Can the gastrointestinal microbiota be modulated by dietary fibre to treat obesity? Irish Journal of Medical Science, 2018, vol. 187, no. 2, pp. 393–402. DOI: 10.1007/s11845-017-1686-9
  4. Obesity and overweight. World health organization. Available at: (23.09.2020) (in Russian).
  5. Pihl A.F., Fonvig C.E., Stjernholm T., Hansen T., Pedersen O., Holm J.-C. The role of the gut microbiota in childhood obesity. Childhood Obesity, 2016, vol. 12, no. 4, pp. 292–299. DOI: 10.1089/chi.2015.0220
  6. Gérard P. Gut microbiota and obesity. Cellular and Molecular Life Sciences, 2016, vol. 73, no. 1, pp. 147–162. DOI: 10.1007/s00018-015-2061-5
  7. Li D., Wang P., Wang P., Hu X., Chen F. The gut microbiota: A treasure for human health. Biotechnology Advances, 2016, vol. 34, no. 7, pp. 1210–1224. DOI: 10.1016/j.biotechadv.2016.08.003
  8. Wang B., Yao M., Lv L., Ling Z., Li L. The Human Microbiota in Health and Disease. Engineering, 2017, vol. 3, no. 1, pp. 71–82. DOI: 10.1016/J.ENG.2017.01.008
  9. Styne D.M., Arslanian S.A., Connor E.L., Farooqi I.S., Murad M.H., Silverstein J.H., Yanovski J.A. Pediatric obesity-assessment, treatment, and prevention: An endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab, 2017, vol. 102, no. 3, pp. 709–757. DOI: 10.1210/jc.2016-2573
  10. McCuen-Wurst C., Ruggieri M., Allison K.C. Disordered eating and obesity: associations between binge-eating disorder, night-eating syndrome, and weight-related comorbidities. Annals of the New York Academy of Sciences, 2018, vol. 1411, no. 1, pp. 96–105. DOI: 10.1111/nyas.13467
  11. Hewagalamulage S.D., Lee T.K., Clarke I.J., Henry B.A. Stress, cortisol, and obesity: a role for cortisol responsiveness in identifying individuals prone to obesity. Domestic Animal Endocrinology, 2016, vol. 56, pp. S112–S120. DOI: 10.1016/j.domaniend.2016.03.004
  12. St-Onge M.P. Sleep–obesity relation: underlying mechanisms and consequences for treatment. Obesity Reviews, 2017, vol. 18, no. 1, pp. 34–39. DOI: 10.1111/obr.12499
  13. Ogilvie R.P., Patel S.R. The epidemiology of sleep and obesity. Sleep Health, 2017, vol. 3, no. 5, pp. 383–388. DOI: 10.1016/j.sleh.2017.07.013
  14. Locke A.E., Kahali B., Berndt S.I., Justice A.E., Pers T.H., Day F.R., Powell C., Vedantam S. [et al.]. Genetic studies of body mass index yield new insights for obesity biology. Nature, 2015, vol. 518, no. 7538, pp. 197–206. DOI: 10.1038/nature14177
  15. Amiri P., Jalali-Farahani S., Rezaei M., Hosseinpanah F., Aziz F. Which obesity phenotypes predict poor health-related quality of life in adult men and women? Tehran Lipid and glucose study. PLoS ONE, vol. 13, no. 9, pp. e0203028. DOI: 10.1371/journal.pone.0203028
  16. Andrea S.B., Hooker E.R., Messer L.C., Tandy T., Boone-Heinonen J. Does the association between early life growth and later obesity differ by race/ethnicity or socioeconomic status? A systematic review. Annals of Epidemiology, 2017, vol. 27, no. 9, pp. 583–592.e5. DOI: 10.1016/j.annepidem.2017.08.019
  17. White P., Skirrow H., George A., Memon A. A systematic review of economic evaluations of local authority commissioned preventative public health interventions in overweight and obesity, physical inactivity, alcohol and illicit drugs use and smoking cessation in the United Kingdom. J. Public Health (Oxf), 2018, vol. 40, no. 4, pp. e521–e530. DOI: 10.1093/pubmed/fdy026
  18. Anhê F.F., Varin T.V., Schertzer J.D., Marette A. The Gut Microbiota as a Mediator of Metabolic Benefits after Bariatric Surgery. Canadian Journal of Diabetes, 2017, vol. 41, no. 4, pp. 439–447. DOI: 10.1016/j.jcjd.2017.02.002
  19. Fontané L., Boix D.B., Arno A.G., Sanz G.L., Montoya J.P.-B. Influencia de la microbiota y de los probióticos en la obesidad. Clínica e Investig.en Arterioscler, 2018, vol. 30, no. 6, pp. 271–279.
  20. Gérard P. Gut microbiota and obesity. Cellular and Molecular Life Sciences, 2016, vol. 73, no. 1, pp. 147–162. DOI: 10.1007/s00018-015-2061-5
  21. Indiani C.M.D.S.P., Rizzardi K.F., Castelo P.M., Fábio L. Ferraz C., Darrieux M., Manzano Parisotto T. Childhood Obesity and Firmicutes/Bacteroidetes Ratio in the Gut Microbiota: A Systematic Review. Childhood Obesity, 2018, vol. 14, no. 8, pp. 501–509. DOI: 10.1089/chi.2018.0040
  22. Crovesy L., Masterson D., Rosado E.L. Profile of the gut microbiota of adults with obesity: a systematic review. Eur. J. Clin. Nutr, 2020, vol. 74, no. 9, pp. 1251–1262. DOI: 10.1038/s41430-020-0607-6
  23. Shin N.R., Whon T.W., Bae J.W. Proteobacteria: Microbial signature of dysbiosis in gut microbiota. Trends in Biotechnology, 2015, vol. 33, no. 9, pp. 496–503. DOI: 10.1016/j.tibtech.2015.06.011
  24. Duncan S.H., Hold G.L., Harmsen H.J.M., Stewart C.S., Flint H.J. Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol, 2002, vol. 52, no. 6, pp. 2141–2146. DOI: 10.1099/00207713-52-6-2141
  25. Lopez-Siles M., Duncan S.H., Garcia-Gil L.J., Martinez-Medina M. Faecalibacterium prausnitzii: From microbiology to diagnostics and prognostics. ISME Journal, 2017, vol. 11, no. 4, pp. 841–852. DOI: 10.1038/ismej.2016.176
  26. Martín R., Miquel S., Benevides L., Bridonneau C., Robert V., Hudault S., Chain F., Berteau O. [et al.]. Functional characterization of novel Faecalibacterium prausnitzii strains isolated from healthy volunteers: A step forward in the use of F. prausnitzii as a next-generation probiotic. Front. Microbiol, 2017, vol. 8, no. 30, pp. 1226. DOI: 10.3389/fmicb.2017.01226
  27. Million M., Angelakis E., Maraninchi M., Henry M., Giorgi R., Valero R., Vialettes B., Raoult D. Correlation between body mass index and gut concentrations of Lactobacillus reuteri, Bifidobacterium animalis, Methanobrevibacter smithii and Escherichia coli. Int. J. Obes. Int J Obes (Lond), 2013, vol. 37, no. 11, pp. 1460–1466. DOI: 10.1038/ijo.2013.20
  28. Drissi F., Merhej V., Angelakis E., El Kaoutari A., Carrière F., Henrissat B., Raoult D. Comparative genomics analysis of Lactobacillus species associated with weight gain or weight protection. Nutr. Diabetes, 2014, vol. 4, no. 2, pp. e109. DOI: 10.1038/nutd.2014.6
  29. Geerlings S.Y., Kostopoulos I., de Vos W.M., Belzer C. Akkermansia muciniphila in the Human Gastrointestinal Tract: When, Where, and How? Microorganisms, 2018, vol. 6, no. 3, pp. 75. DOI: 10.3390/microorganisms6030075
  30. Derrien M., Belzer C., de Vos W.M. Akkermansia muciniphila and its role in regulating host functions. Microbial Pathogenesis, 2017, vol. 106, pp. 171–181. DOI: 10.1016/j.micpath.2016.02.005
  31. Engels C., Ruscheweyh H.-J., Beerenwinkel N., Lacroix C., Schwab C. The common gut microbe Eubacterium hallii also contributes to intestinal propionate formation. Front. Microbiol, 2016, vol. 19, no. 7, pp. 713. DOI: 10.3389/fmicb.2016.00713
  32. Ghavami S.B.,Rostami E., Sephay A.A., Shahrokh S., Balaii H., Aghdaei H.A., Zali M.R. Alterations of the human gut Methanobrevibacter smithii as a biomarker for inflammatory bowel diseases. Microb. Pathog, 2018, no. 117, pp. 285–289. DOI: 10.1016/j.micpath.2018.01.029
  33. Perez-Muñoz M.E., Arrieta M.-C., Ramer-Tait A.E., Walter J. A critical assessment of the «sterile womb» and «in utero colonization» hypotheses: Implications for research on the pioneer infant microbiome. Microbiome, 2017, vol. 28, no. 5 (1), pp. 48. DOI: 10.1186/s40168-017-0268-4
  34. Gschwind R., Fournier T., Butel M.-J., Wydau-Dematteis S. Microbiota establishment: An in utero colonization decisive for future health? Medecine Sciences, 2018, vol. 34, no. 4, pp. 331–337. DOI: 10.1051/medsci/20183404014
  35. Riva A., Borgo F., Lassandro C., Verduci E., Morace G., Borghi E., Berry D. Pediatric obesity is associated with an altered gut microbiota and discordant shifts in Firmicutes populations. Environ. Microbiol, 2017, vol. 19, no. 1, pp. 95–105. DOI: 10.1111/1462-2920.13463
  36. Borgo F., Verduci E., Riva A., Lassandro C., Riva E., Morace G., Borghi E. [et al.]. Relative Abundance in Bacterial and Fungal Gut Microbes in Obese Children: A Case Control Study. Child. Obes, 2017, vol. 13, no. 1, pp. 78–84. DOI: 10.1089/chi.2015.0194
  37. Bergström A., Skov T.H., Bahl M.I., Roager H.M., Christensen L.B., Ejlerskov K.T., Mølgaard C., Michaelsen K.F., Licht T.R. Establishment of intestinal microbiota during early life: A longitudinal, explorative study of a large cohort of Danish infants. Appl. Environ. Microbiol, 2014, vol. 80, no. 9, pp. 2889–2900. DOI: 10.1128/AEM.00342-14
  38. Scheepers L.E.J.M., Penders J., Mbakwa C.A., Thijs C., Mommers M., Arts I.C.W. The intestinal microbiota composition and weight development in children: The KOALA Birth Cohort Study. Int. J. Obes, 2015, vol. 39, no. 1, pp. 16–25. DOI: 10.1038/ijo.2014.178
  39. Xu P., Li M., Zhang J., Zhang T. Correlation of intestinal microbiota with overweight and obesity in Kazakh school children. BMC Microbiol, 2012, vol. 12, pp. 283. DOI: 10.1186/1471-2180-12-283
  40. Vael C., Verhulst S.L., Nelen V., Goossens H., Desager K.N. Intestinal microflora and body mass index during the first three years of life: An observational study. Gut Pathog, 2011, vol. 3, no. 1, pp. 8. DOI: 10.1186/1757-4749-3-8
  41. Ignacio A., Fernandes M.R., Rodrigues V.A.A., Groppo F.C., Cardoso A.L., Avila-Campos M.J., Nakano V. Correlation between body mass index and faecal microbiota from children. Clin. Microbiol. Infect, 2016, vol. 22, no. 3, pp. 258.e1–258.e8. DOI: 10.1016/j.cmi.2015.10.031
  42. Milani C., Duranti S., Bottacini F., Casey E., Turroni F., Mahony J., Belzer C., Delgado Palacio S. [et al.]. The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota. Microbiol. Mol. Biol. Rev, 2017, vol. 8, no. 81 (4), pp. e00036–e000317. DOI: 10.1128/MMBR.00036-17
  43. Butler É.M., Chiavaroli V., Derraik J.G.B., Grigg C.P., Wilson B.C., Walker N., O'Sullivan J.M., Cutfield W.S. Maternal bacteria to correct abnormal gut microbiota in babies born by C-section. Medicine (Baltimore), 2020, vol. 99, no. 30, pp. e21315. DOI: 10.1097/MD.0000000000021315
  44. Li H.T., Zhou Y.B., Liu J.M. The impact of cesarean section on offspring overweight and obesity: A systematic review and meta-analysis. International Journal of Obesity, 2013, vol. 37, no. 7, pp. 893–899. DOI: 10.1038/ijo.2012.195
  45. Darmasseelane K., Hyde M.J., Santhakumaran S., Gale C., Modi N. Mode of delivery and offspring body mass index, overweight and obesity in adult life: A systematic review and meta-analysis. PLoS One, 2014, vol. 26, no. 9 (2), pp. e87896. DOI: 10.1371/journal.pone.0087896
  46. Kuhle S., Tong O.S., Woolcott C.G. Association between caesarean section and childhood obesity: A systematic review and meta-analysis. Obesity Reviews, 2015, vol. 16, no. 4, pp. 295–303. DOI: 10.1111/obr.12267
  47. Rutayisire E., Huang K., Liu Y., Tao F. The mode of delivery affects the diversity and colonization pattern of the gut microbiota during the first year of infants’ life: A systematic review. BMC Gastroenterol, 2016, vol. 16, no. 1, pp. 86. DOI: 10.1186/s12876-016-0498-0
  48. Ortega-Garciá J.A., Kloosterman N., Alvarez L., Tobarra-Sánchez E., Cárceles-Álvarez A., Pastor-Valero R., López-Hernández F.A., Sánchez-Solis M., Claudio L. Full Breastfeeding and Obesity in Children: A Prospective Study from Birth to 6 Years. Child. Obes, 2018, vol. 14, no. 5, pp. 327–337. DOI: 10.1089/chi.2017.0335
  49. Dominguez-Bello M.G., De Jesus-Laboy K.M., Shen N., Cox L.M., Amir A., Gonzalez A., Bokulich N.A., Song S.J. [et al.]. Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nat. Med. Nature Publishing Group, 2016, vol. 22, no. 3, pp. 250–253. DOI: 10.1038/nm.4039
  50. Wallby T., Lagerberg D., Magnusson M. Relationship between Breastfeeding and Early Childhood Obesity: Results of a Prospective Longitudinal Study from Birth to 4 Years. Breastfeed. Med, 2017, vol. 12, no. 1, pp. 48–53. DOI: 10.1089/bfm.2016.0124
  51. Singhal A., Kennedy K., Lanigan J., Fewtrell M., Cole T.J., Stephenson T., Elias-Jones A., Weaver L.T. [et al.]. Nutrition in infancy and long-term risk of obesity: Evidence from 2 randomized controlled trials. Am. J. Clin. Nutr, 2010, vol. 92, no. 5, pp. 1133–1144.DOI: 10.3945/ajcn.2010.29302
  52. Koletzko B., von Kries R., Closa R., Escribano J., Scaglioni S., Giovannini M., Beyer J., Demmelmair H. [et al.]. Can infant feeding choices modulate later obesity risk? Am. J. Clin. Nutr, 2009, vol. 89, no. 5, pp. 1502S–1508S. DOI: 10.3945/ajcn.2009.27113D
  53. Michaelsen K.F., Greer F.R. Protein needs early in life and long-term health. Am. J. Clin. Nutr, 2014, vol. 99, no. 3, pp. 718S–722S. DOI: 10.3945/ajcn.113.072603
  54. Larnkjœr A., Mølgaard C., Michaelsen K.F. Early nutrition impact on the insulin-like growth factor axis and later health consequences. Current Opinion in Clinical Nutrition and Metabolic Care, 2012, vol. 15, no. 3, pp. 285–292. DOI: 10.1097/MCO.0b013e328351c472
  55. Sahin S., Ozdemir T., Katipoglu N., Akcan A.B., Kaynak M. Turkmen et al. Comparison of Changes in Breast Milk Macronutrient Content during the First Month in Preterm and Term Infants. Breastfeed. Med, 2020, vol. 15, no. 1, pp. 56–62. DOI: 10.1089/bfm.2019.0141
  56. Wang M., Radlowski E.C., Li M., Monaco M.H., Donovan S.M. Feeding Mode, but Not Prebiotics, Affects Colonic Microbiota Composition and Volatile Fatty Acid Concentrations in Sow-Reared, Formula-Fed, and Combination-Fed Piglets. J. Nutr, 2019, vol. 149, no. 12, pp. 2156–2163. DOI: 10.1093/jn/nxz183
  57. Kirchberg F.F., Hellmuth C., Totzauer M., Uhl O., Closa-Monasterolo R., Escribano J., Gruszfeld D., Gradowska K. [et al.]. Impact of infant protein supply and other early life factors on plasma metabolome at 5.5 and 8 years of age: a randomized trial. Int. J. Obes, 2020, vol. 44, no. 1, pp. 69–81. DOI: 10.1038/s41366-019-0398-9
  58. Fleddermann M., Demmelmair H., Grote V., Bidlingmaier M., Grimminger P., Bielohuby M., Koletzko B. Role of selected amino acids on plasma IGF-I concentration in infants. Eur. J. Nutr, 2017, vol. 56, no. 2, pp. 613–620.DOI: 10.1007/s00394-015-1105-9
  59. Brands B., Demmelmair H., Koletzko B. How growth due to infant nutrition influences obesity and later disease risk. Acta Paediatrica, 2014, vol. 103, no. 6, pp. 578–585. DOI: 10.1111/apa.12593
  60. Fleddermann M., Demmelmair H., Grote V., Nikolic T., Trisic B., Koletzko B. Infant formula composition affects energetic efficiency for growth: The BeMIM study, a randomized controlled trial. Clin. Nutr, 2014, vol. 33, no. 4, pp. 588–595. DOI: 10.1016/j.clnu.2013.12.007
  61. Devan S.R.K., Arumugam S., Shankar G., Poosala S. Differential sensitivity of chronic high-fat-diet-induced obesity in Sprague-Dawley rats. J. Basic Clin. Physiol. Pharmacol, 2018, vol. 29, no. 5, pp. 553–563. DOI: 10.1515/jbcpp-2017-0030
  62. Das U.N. The lipids that matter from infant nutrition to insulin resistance. Prostaglandins Leukotrienes and Essential Fatty Acids, 2002, vol. 67, no. 1, pp. 1–12. DOI: 10.1054/plef.2002.0374
  63. Verduci E., Banderali G., Barberi S., Radaelli G., Lops A., Betti F., Riva E., Giovannini M. Epigenetic effects of human breast milk. Nutrients, 2014, vol. 6, no. 4, pp. 1711–1724. DOI: 10.3390/nu6041711
  64. Vuillermin P.J., Macia L., Nanan R., Tang M.L.K., Collier F., Brix S. The maternal microbiome during pregnancy and allergic disease in the offspring. Seminars in Immunopathology, 2017, vol. 39, no. 6, pp. 669–675. DOI: 10.1007/s00281-017-0652-y
  65. Bering S.B. Human milk oligosaccharides to prevent gut dysfunction and necrotizing enterocolitis in preterm neonates. Nutrients, 2018, vol. 10, no. 10, pp. 1461. DOI: 10.3390/nu10101461
  66. Ortega-Garciá J.A., Kloosterman N., Alvarez L., Tobarra-Sánchez E., Cárceles-Álvarez A., Pastor-Valero R., López-Hernández F.A., Sánchez-Solis M., Claudio L. Full Breastfeeding and Obesity in Children: A Prospective Study from Birth to 6 Years. Child. Obes, 2018, vol. 14, no. 5, pp. 327–337. DOI: 10.1089/chi.2017.0335
  67. Marseglia L., Manti S., D'Angelo G., Cuppari C., Salpietro V., Filippelli M., Trovato A., Gitto E., Salpietro C., Arrigo T. Obesity and breastfeeding: The strength of association. Women and Birth, 2015, vol. 28, no. 2, pp. 81–86. DOI: 10.1016/j.wombi.2014.12.007
  68. Zinöcker M.K., Lindseth I.A. The western diet–microbiome-host interaction and its role in metabolic disease. Nutrients, 2018, vol. 10, no. 3, pp. 365. DOI: 10.3390/nu10030365
  69. Singh R.K., Chang H.-W., Yan D., Lee K.M., Ucmak D., Wong K., Abrouk M., Farahnik B. [et al.]. Influence of diet on the gut microbiome and implications for human health. Journal of Translational Medicine, 2017, vol. 8, no. 15 (1), pp. 73. DOI: 10.1186/s12967-017-1175-y
  70. Hills R.D., Pontefract B.A., Mishcon H.R., Black C.A., Sutton S.C., Theberge C.R. Gut microbiome: Profound implications for diet and disease. Nutrients, 2019, vol. 11, no. 7, pp. 1613. DOI: 10.3390/nu11071613
  71. De Filippo C., Cavalieri D., Di Paola M., Ramazzotti M., Baptiste PoulletJ., Massart S., Collini S., Pieraccini G., Lionetti P. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. U. S. A., 2010, vol. 107, no. 33, pp. 14691–14696. DOI: 10.1073/pnas.1005963107
  72. Holscher H.D. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes, 2017, vol. 8, no. 2, pp. 172–184. DOI: 10.1080/19490976.2017.1290756
  73. Gentile C.L., Weir T.L. The gut microbiota at the intersection of diet and human health. Science, 2018, vol. 362, no. 6416, pp. 776–780. DOI: 10.1126/science.aau5812
  74. Garcia-Mantrana I., Selma-Royo M., Alcantara C., Collado M.C. Shifts on gut microbiota associated to mediterranean diet adherence and specific dietary intakes on general adult population. Front. Microbiol, 2018, vol. 7, no. 9, pp. 890. DOI: 10.3389/fmicb.2018.00890
  75. Colquitt J.L., Pickett K., Loveman E., Frampton G.K. Surgery for weight loss in adults. Cochrane Database of Systematic Reviews, 2014, vol. 2014, no. 8, pp. CD003641. DOI: 10.1002/14651858.CD003641.pub4
  76. Phillips B.T., Shikora S.A. The history of metabolic and bariatric surgery: Development of standards for patient safety and efficacy. Metabolism: Clinical and Experimental, 2018, no. 79, pp. 97–107. DOI: 10.1016/j.metabol.2017.12.010
  77. Cortez R.V., Petry T., Caravatto P., Pessôa R., Sanabani S.S., Martinez M.B., Sarian T., Salles J.E., Cohen R., Taddei C.R. Shifts in intestinal microbiota after duodenal exclusion favor glycemic control and weight loss: a randomized controlled trial. Surg. Obes. Relat. Dis, 2018, vol. 14, no. 11, pp. 1748–1754.DOI: 10.1016/j.soard.2018.07.021
  78. Hibberd A.A., Yde C.C., Ziegler M.L., Honoré A.H., Saarinen M.T., Lahtinen S., Stahl B., Jensen H.M., Stenman L.K. Probiotic or synbiotic alters the gut microbiota and metabolism in a randomised controlled trial of weight management in overweight adults. Benef. Microbes, 2019, vol. 10, no. 2, pp. 121–135. DOI: 10.3920/BM2018.0028
  79. Payahoo L., Khajebishak Y., Alivand M.R., Soleimanzade H., Alipour S., Barzegari A., Ostadrahimi A. Investigation the effect of oleoylethanolamide supplementation on the abundance of Akkermansia muciniphila bacterium and the dietary intakes in people with obesity: A randomized clinical trial. Appetite, 2019, vol. 1, no. 141, pp. 104301. DOI: 10.1016/j.appet.2019.05.032

You are here