Gut microbiota as risk factor causing obesity in children
P.Yu. Petrova, A.D. Aga, E.S. Trapeznikova, E.V. Budanova
I.M. Sechenov First Moscow State Medical University, 8/1 Trubetskaya Str., Moscow, 119048, Russian Federation
Nowadays obesity resulting from abnormal or excessive fat deposits in a body has become a true epidemic. Risk factors that cause the disease include improper lifestyle, hereditary predisposition, as well as metabolic activity of gut microbiota. Research works performed over the last decades indicate that microbes that create colonies in human intestines play a significant role in maintaining proper metabolism. There is a correlation between disorders in gut microbiota structure and immune disorders, elevated susceptibility to infections, and obesity. There is more and more evidence that gut microbiota and its overall bacterial genome exert their influence on nutrients assimilation and regulate energy metabolism and fat accumulation.
Certain differences were detected in microbiota gut structure in children and adults with obesity and people with proper body mass index. Delivery and feeding are among key factors influencing gut microbiota formation in a child. Thus, research results indicate that natural birth, as opposed to cesarean section, can prevent obesity occurrence in a child. Breast-feeding also makes a substantial contribution into development of an infant since breast milk is balanced food that provides optimal metabolism in an infant’s body and helps creating proper gut microbiota. At the same time, according to data obtained via numerous research works, artificial feeding can be related to obesity occurrence in future.
Ways to fight obesity include medication therapy, dietary nutrition, physical activity as well as bariatric surgery; the latter is nowadays considered to be the most efficient procedure on the matter. Reduction in body mass via influencing gut microbiota is a promising trend in research in the sphere. Despite there are objective data on benign effects produced by probiotics and prebiotics on gut microbiota, experts haven’t been able to reach agreement on their efficiency yet.
- Garabedian L.F., Ross-Degnan D., Wharam J.F. Mobile Phone and Smartphone Technologies for Diabetes Care and Self-Management. Current Diabetes Reports, 2015, vol. 15, no. 12, pp. 109. DOI: 10.1007/s11892-015-0680-8
- Davis C.D. The gut microbiome and its role in obesity. Nutr. Today, 2016, vol. 51, no. 4, pp. 167–174. DOI: 10.1097/NT.0000000000000167
- Davis H.C. Can the gastrointestinal microbiota be modulated by dietary fibre to treat obesity? Irish Journal of Medical Science, 2018, vol. 187, no. 2, pp. 393–402. DOI: 10.1007/s11845-017-1686-9
- Obesity and overweight. World health organization. Available at: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (23.09.2020) (in Russian).
- Pihl A.F., Fonvig C.E., Stjernholm T., Hansen T., Pedersen O., Holm J.-C. The role of the gut microbiota in childhood obesity. Childhood Obesity, 2016, vol. 12, no. 4, pp. 292–299. DOI: 10.1089/chi.2015.0220
- Gérard P. Gut microbiota and obesity. Cellular and Molecular Life Sciences, 2016, vol. 73, no. 1, pp. 147–162. DOI: 10.1007/s00018-015-2061-5
- Li D., Wang P., Wang P., Hu X., Chen F. The gut microbiota: A treasure for human health. Biotechnology Advances, 2016, vol. 34, no. 7, pp. 1210–1224. DOI: 10.1016/j.biotechadv.2016.08.003
- Wang B., Yao M., Lv L., Ling Z., Li L. The Human Microbiota in Health and Disease. Engineering, 2017, vol. 3, no. 1, pp. 71–82. DOI: 10.1016/J.ENG.2017.01.008
- Styne D.M., Arslanian S.A., Connor E.L., Farooqi I.S., Murad M.H., Silverstein J.H., Yanovski J.A. Pediatric obesity-assessment, treatment, and prevention: An endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab, 2017, vol. 102, no. 3, pp. 709–757. DOI: 10.1210/jc.2016-2573
- McCuen-Wurst C., Ruggieri M., Allison K.C. Disordered eating and obesity: associations between binge-eating disorder, night-eating syndrome, and weight-related comorbidities. Annals of the New York Academy of Sciences, 2018, vol. 1411, no. 1, pp. 96–105. DOI: 10.1111/nyas.13467
- Hewagalamulage S.D., Lee T.K., Clarke I.J., Henry B.A. Stress, cortisol, and obesity: a role for cortisol responsiveness in identifying individuals prone to obesity. Domestic Animal Endocrinology, 2016, vol. 56, pp. S112–S120. DOI: 10.1016/j.domaniend.2016.03.004
- St-Onge M.P. Sleep–obesity relation: underlying mechanisms and consequences for treatment. Obesity Reviews, 2017, vol. 18, no. 1, pp. 34–39. DOI: 10.1111/obr.12499
- Ogilvie R.P., Patel S.R. The epidemiology of sleep and obesity. Sleep Health, 2017, vol. 3, no. 5, pp. 383–388. DOI: 10.1016/j.sleh.2017.07.013
- Locke A.E., Kahali B., Berndt S.I., Justice A.E., Pers T.H., Day F.R., Powell C., Vedantam S. [et al.]. Genetic studies of body mass index yield new insights for obesity biology. Nature, 2015, vol. 518, no. 7538, pp. 197–206. DOI: 10.1038/nature14177
- Amiri P., Jalali-Farahani S., Rezaei M., Hosseinpanah F., Aziz F. Which obesity phenotypes predict poor health-related quality of life in adult men and women? Tehran Lipid and glucose study. PLoS ONE, vol. 13, no. 9, pp. e0203028. DOI: 10.1371/journal.pone.0203028
- Andrea S.B., Hooker E.R., Messer L.C., Tandy T., Boone-Heinonen J. Does the association between early life growth and later obesity differ by race/ethnicity or socioeconomic status? A systematic review. Annals of Epidemiology, 2017, vol. 27, no. 9, pp. 583–592.e5. DOI: 10.1016/j.annepidem.2017.08.019
- White P., Skirrow H., George A., Memon A. A systematic review of economic evaluations of local authority commissioned preventative public health interventions in overweight and obesity, physical inactivity, alcohol and illicit drugs use and smoking cessation in the United Kingdom. J. Public Health (Oxf), 2018, vol. 40, no. 4, pp. e521–e530. DOI: 10.1093/pubmed/fdy026
- Anhê F.F., Varin T.V., Schertzer J.D., Marette A. The Gut Microbiota as a Mediator of Metabolic Benefits after Bariatric Surgery. Canadian Journal of Diabetes, 2017, vol. 41, no. 4, pp. 439–447. DOI: 10.1016/j.jcjd.2017.02.002
- Fontané L., Boix D.B., Arno A.G., Sanz G.L., Montoya J.P.-B. Influencia de la microbiota y de los probióticos en la obesidad. Clínica e Investig.en Arterioscler, 2018, vol. 30, no. 6, pp. 271–279.
- Gérard P. Gut microbiota and obesity. Cellular and Molecular Life Sciences, 2016, vol. 73, no. 1, pp. 147–162. DOI: 10.1007/s00018-015-2061-5
- Indiani C.M.D.S.P., Rizzardi K.F., Castelo P.M., Fábio L. Ferraz C., Darrieux M., Manzano Parisotto T. Childhood Obesity and Firmicutes/Bacteroidetes Ratio in the Gut Microbiota: A Systematic Review. Childhood Obesity, 2018, vol. 14, no. 8, pp. 501–509. DOI: 10.1089/chi.2018.0040
- Crovesy L., Masterson D., Rosado E.L. Profile of the gut microbiota of adults with obesity: a systematic review. Eur. J. Clin. Nutr, 2020, vol. 74, no. 9, pp. 1251–1262. DOI: 10.1038/s41430-020-0607-6
- Shin N.R., Whon T.W., Bae J.W. Proteobacteria: Microbial signature of dysbiosis in gut microbiota. Trends in Biotechnology, 2015, vol. 33, no. 9, pp. 496–503. DOI: 10.1016/j.tibtech.2015.06.011
- Duncan S.H., Hold G.L., Harmsen H.J.M., Stewart C.S., Flint H.J. Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol, 2002, vol. 52, no. 6, pp. 2141–2146. DOI: 10.1099/00207713-52-6-2141
- Lopez-Siles M., Duncan S.H., Garcia-Gil L.J., Martinez-Medina M. Faecalibacterium prausnitzii: From microbiology to diagnostics and prognostics. ISME Journal, 2017, vol. 11, no. 4, pp. 841–852. DOI: 10.1038/ismej.2016.176
- Martín R., Miquel S., Benevides L., Bridonneau C., Robert V., Hudault S., Chain F., Berteau O. [et al.]. Functional characterization of novel Faecalibacterium prausnitzii strains isolated from healthy volunteers: A step forward in the use of F. prausnitzii as a next-generation probiotic. Front. Microbiol, 2017, vol. 8, no. 30, pp. 1226. DOI: 10.3389/fmicb.2017.01226
- Million M., Angelakis E., Maraninchi M., Henry M., Giorgi R., Valero R., Vialettes B., Raoult D. Correlation between body mass index and gut concentrations of Lactobacillus reuteri, Bifidobacterium animalis, Methanobrevibacter smithii and Escherichia coli. Int. J. Obes. Int J Obes (Lond), 2013, vol. 37, no. 11, pp. 1460–1466. DOI: 10.1038/ijo.2013.20
- Drissi F., Merhej V., Angelakis E., El Kaoutari A., Carrière F., Henrissat B., Raoult D. Comparative genomics analysis of Lactobacillus species associated with weight gain or weight protection. Nutr. Diabetes, 2014, vol. 4, no. 2, pp. e109. DOI: 10.1038/nutd.2014.6
- Geerlings S.Y., Kostopoulos I., de Vos W.M., Belzer C. Akkermansia muciniphila in the Human Gastrointestinal Tract: When, Where, and How? Microorganisms, 2018, vol. 6, no. 3, pp. 75. DOI: 10.3390/microorganisms6030075
- Derrien M., Belzer C., de Vos W.M. Akkermansia muciniphila and its role in regulating host functions. Microbial Pathogenesis, 2017, vol. 106, pp. 171–181. DOI: 10.1016/j.micpath.2016.02.005
- Engels C., Ruscheweyh H.-J., Beerenwinkel N., Lacroix C., Schwab C. The common gut microbe Eubacterium hallii also contributes to intestinal propionate formation. Front. Microbiol, 2016, vol. 19, no. 7, pp. 713. DOI: 10.3389/fmicb.2016.00713
- Ghavami S.B.,Rostami E., Sephay A.A., Shahrokh S., Balaii H., Aghdaei H.A., Zali M.R. Alterations of the human gut Methanobrevibacter smithii as a biomarker for inflammatory bowel diseases. Microb. Pathog, 2018, no. 117, pp. 285–289. DOI: 10.1016/j.micpath.2018.01.029
- Perez-Muñoz M.E., Arrieta M.-C., Ramer-Tait A.E., Walter J. A critical assessment of the «sterile womb» and «in utero colonization» hypotheses: Implications for research on the pioneer infant microbiome. Microbiome, 2017, vol. 28, no. 5 (1), pp. 48. DOI: 10.1186/s40168-017-0268-4
- Gschwind R., Fournier T., Butel M.-J., Wydau-Dematteis S. Microbiota establishment: An in utero colonization decisive for future health? Medecine Sciences, 2018, vol. 34, no. 4, pp. 331–337. DOI: 10.1051/medsci/20183404014
- Riva A., Borgo F., Lassandro C., Verduci E., Morace G., Borghi E., Berry D. Pediatric obesity is associated with an altered gut microbiota and discordant shifts in Firmicutes populations. Environ. Microbiol, 2017, vol. 19, no. 1, pp. 95–105. DOI: 10.1111/1462-2920.13463
- Borgo F., Verduci E., Riva A., Lassandro C., Riva E., Morace G., Borghi E. [et al.]. Relative Abundance in Bacterial and Fungal Gut Microbes in Obese Children: A Case Control Study. Child. Obes, 2017, vol. 13, no. 1, pp. 78–84. DOI: 10.1089/chi.2015.0194
- Bergström A., Skov T.H., Bahl M.I., Roager H.M., Christensen L.B., Ejlerskov K.T., Mølgaard C., Michaelsen K.F., Licht T.R. Establishment of intestinal microbiota during early life: A longitudinal, explorative study of a large cohort of Danish infants. Appl. Environ. Microbiol, 2014, vol. 80, no. 9, pp. 2889–2900. DOI: 10.1128/AEM.00342-14
- Scheepers L.E.J.M., Penders J., Mbakwa C.A., Thijs C., Mommers M., Arts I.C.W. The intestinal microbiota composition and weight development in children: The KOALA Birth Cohort Study. Int. J. Obes, 2015, vol. 39, no. 1, pp. 16–25. DOI: 10.1038/ijo.2014.178
- Xu P., Li M., Zhang J., Zhang T. Correlation of intestinal microbiota with overweight and obesity in Kazakh school children. BMC Microbiol, 2012, vol. 12, pp. 283. DOI: 10.1186/1471-2180-12-283
- Vael C., Verhulst S.L., Nelen V., Goossens H., Desager K.N. Intestinal microflora and body mass index during the first three years of life: An observational study. Gut Pathog, 2011, vol. 3, no. 1, pp. 8. DOI: 10.1186/1757-4749-3-8
- Ignacio A., Fernandes M.R., Rodrigues V.A.A., Groppo F.C., Cardoso A.L., Avila-Campos M.J., Nakano V. Correlation between body mass index and faecal microbiota from children. Clin. Microbiol. Infect, 2016, vol. 22, no. 3, pp. 258.e1–258.e8. DOI: 10.1016/j.cmi.2015.10.031
- Milani C., Duranti S., Bottacini F., Casey E., Turroni F., Mahony J., Belzer C., Delgado Palacio S. [et al.]. The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota. Microbiol. Mol. Biol. Rev, 2017, vol. 8, no. 81 (4), pp. e00036–e000317. DOI: 10.1128/MMBR.00036-17
- Butler É.M., Chiavaroli V., Derraik J.G.B., Grigg C.P., Wilson B.C., Walker N., O'Sullivan J.M., Cutfield W.S. Maternal bacteria to correct abnormal gut microbiota in babies born by C-section. Medicine (Baltimore), 2020, vol. 99, no. 30, pp. e21315. DOI: 10.1097/MD.0000000000021315
- Li H.T., Zhou Y.B., Liu J.M. The impact of cesarean section on offspring overweight and obesity: A systematic review and meta-analysis. International Journal of Obesity, 2013, vol. 37, no. 7, pp. 893–899. DOI: 10.1038/ijo.2012.195
- Darmasseelane K., Hyde M.J., Santhakumaran S., Gale C., Modi N. Mode of delivery and offspring body mass index, overweight and obesity in adult life: A systematic review and meta-analysis. PLoS One, 2014, vol. 26, no. 9 (2), pp. e87896. DOI: 10.1371/journal.pone.0087896
- Kuhle S., Tong O.S., Woolcott C.G. Association between caesarean section and childhood obesity: A systematic review and meta-analysis. Obesity Reviews, 2015, vol. 16, no. 4, pp. 295–303. DOI: 10.1111/obr.12267
- Rutayisire E., Huang K., Liu Y., Tao F. The mode of delivery affects the diversity and colonization pattern of the gut microbiota during the first year of infants’ life: A systematic review. BMC Gastroenterol, 2016, vol. 16, no. 1, pp. 86. DOI: 10.1186/s12876-016-0498-0
- Ortega-Garciá J.A., Kloosterman N., Alvarez L., Tobarra-Sánchez E., Cárceles-Álvarez A., Pastor-Valero R., López-Hernández F.A., Sánchez-Solis M., Claudio L. Full Breastfeeding and Obesity in Children: A Prospective Study from Birth to 6 Years. Child. Obes, 2018, vol. 14, no. 5, pp. 327–337. DOI: 10.1089/chi.2017.0335
- Dominguez-Bello M.G., De Jesus-Laboy K.M., Shen N., Cox L.M., Amir A., Gonzalez A., Bokulich N.A., Song S.J. [et al.]. Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nat. Med. Nature Publishing Group, 2016, vol. 22, no. 3, pp. 250–253. DOI: 10.1038/nm.4039
- Wallby T., Lagerberg D., Magnusson M. Relationship between Breastfeeding and Early Childhood Obesity: Results of a Prospective Longitudinal Study from Birth to 4 Years. Breastfeed. Med, 2017, vol. 12, no. 1, pp. 48–53. DOI: 10.1089/bfm.2016.0124
- Singhal A., Kennedy K., Lanigan J., Fewtrell M., Cole T.J., Stephenson T., Elias-Jones A., Weaver L.T. [et al.]. Nutrition in infancy and long-term risk of obesity: Evidence from 2 randomized controlled trials. Am. J. Clin. Nutr, 2010, vol. 92, no. 5, pp. 1133–1144.DOI: 10.3945/ajcn.2010.29302
- Koletzko B., von Kries R., Closa R., Escribano J., Scaglioni S., Giovannini M., Beyer J., Demmelmair H. [et al.]. Can infant feeding choices modulate later obesity risk? Am. J. Clin. Nutr, 2009, vol. 89, no. 5, pp. 1502S–1508S. DOI: 10.3945/ajcn.2009.27113D
- Michaelsen K.F., Greer F.R. Protein needs early in life and long-term health. Am. J. Clin. Nutr, 2014, vol. 99, no. 3, pp. 718S–722S. DOI: 10.3945/ajcn.113.072603
- Larnkjœr A., Mølgaard C., Michaelsen K.F. Early nutrition impact on the insulin-like growth factor axis and later health consequences. Current Opinion in Clinical Nutrition and Metabolic Care, 2012, vol. 15, no. 3, pp. 285–292. DOI: 10.1097/MCO.0b013e328351c472
- Sahin S., Ozdemir T., Katipoglu N., Akcan A.B., Kaynak M. Turkmen et al. Comparison of Changes in Breast Milk Macronutrient Content during the First Month in Preterm and Term Infants. Breastfeed. Med, 2020, vol. 15, no. 1, pp. 56–62. DOI: 10.1089/bfm.2019.0141
- Wang M., Radlowski E.C., Li M., Monaco M.H., Donovan S.M. Feeding Mode, but Not Prebiotics, Affects Colonic Microbiota Composition and Volatile Fatty Acid Concentrations in Sow-Reared, Formula-Fed, and Combination-Fed Piglets. J. Nutr, 2019, vol. 149, no. 12, pp. 2156–2163. DOI: 10.1093/jn/nxz183
- Kirchberg F.F., Hellmuth C., Totzauer M., Uhl O., Closa-Monasterolo R., Escribano J., Gruszfeld D., Gradowska K. [et al.]. Impact of infant protein supply and other early life factors on plasma metabolome at 5.5 and 8 years of age: a randomized trial. Int. J. Obes, 2020, vol. 44, no. 1, pp. 69–81. DOI: 10.1038/s41366-019-0398-9
- Fleddermann M., Demmelmair H., Grote V., Bidlingmaier M., Grimminger P., Bielohuby M., Koletzko B. Role of selected amino acids on plasma IGF-I concentration in infants. Eur. J. Nutr, 2017, vol. 56, no. 2, pp. 613–620.DOI: 10.1007/s00394-015-1105-9
- Brands B., Demmelmair H., Koletzko B. How growth due to infant nutrition influences obesity and later disease risk. Acta Paediatrica, 2014, vol. 103, no. 6, pp. 578–585. DOI: 10.1111/apa.12593
- Fleddermann M., Demmelmair H., Grote V., Nikolic T., Trisic B., Koletzko B. Infant formula composition affects energetic efficiency for growth: The BeMIM study, a randomized controlled trial. Clin. Nutr, 2014, vol. 33, no. 4, pp. 588–595. DOI: 10.1016/j.clnu.2013.12.007
- Devan S.R.K., Arumugam S., Shankar G., Poosala S. Differential sensitivity of chronic high-fat-diet-induced obesity in Sprague-Dawley rats. J. Basic Clin. Physiol. Pharmacol, 2018, vol. 29, no. 5, pp. 553–563. DOI: 10.1515/jbcpp-2017-0030
- Das U.N. The lipids that matter from infant nutrition to insulin resistance. Prostaglandins Leukotrienes and Essential Fatty Acids, 2002, vol. 67, no. 1, pp. 1–12. DOI: 10.1054/plef.2002.0374
- Verduci E., Banderali G., Barberi S., Radaelli G., Lops A., Betti F., Riva E., Giovannini M. Epigenetic effects of human breast milk. Nutrients, 2014, vol. 6, no. 4, pp. 1711–1724. DOI: 10.3390/nu6041711
- Vuillermin P.J., Macia L., Nanan R., Tang M.L.K., Collier F., Brix S. The maternal microbiome during pregnancy and allergic disease in the offspring. Seminars in Immunopathology, 2017, vol. 39, no. 6, pp. 669–675. DOI: 10.1007/s00281-017-0652-y
- Bering S.B. Human milk oligosaccharides to prevent gut dysfunction and necrotizing enterocolitis in preterm neonates. Nutrients, 2018, vol. 10, no. 10, pp. 1461. DOI: 10.3390/nu10101461
- Ortega-Garciá J.A., Kloosterman N., Alvarez L., Tobarra-Sánchez E., Cárceles-Álvarez A., Pastor-Valero R., López-Hernández F.A., Sánchez-Solis M., Claudio L. Full Breastfeeding and Obesity in Children: A Prospective Study from Birth to 6 Years. Child. Obes, 2018, vol. 14, no. 5, pp. 327–337. DOI: 10.1089/chi.2017.0335
- Marseglia L., Manti S., D'Angelo G., Cuppari C., Salpietro V., Filippelli M., Trovato A., Gitto E., Salpietro C., Arrigo T. Obesity and breastfeeding: The strength of association. Women and Birth, 2015, vol. 28, no. 2, pp. 81–86. DOI: 10.1016/j.wombi.2014.12.007
- Zinöcker M.K., Lindseth I.A. The western diet–microbiome-host interaction and its role in metabolic disease. Nutrients, 2018, vol. 10, no. 3, pp. 365. DOI: 10.3390/nu10030365
- Singh R.K., Chang H.-W., Yan D., Lee K.M., Ucmak D., Wong K., Abrouk M., Farahnik B. [et al.]. Influence of diet on the gut microbiome and implications for human health. Journal of Translational Medicine, 2017, vol. 8, no. 15 (1), pp. 73. DOI: 10.1186/s12967-017-1175-y
- Hills R.D., Pontefract B.A., Mishcon H.R., Black C.A., Sutton S.C., Theberge C.R. Gut microbiome: Profound implications for diet and disease. Nutrients, 2019, vol. 11, no. 7, pp. 1613. DOI: 10.3390/nu11071613
- De Filippo C., Cavalieri D., Di Paola M., Ramazzotti M., Baptiste PoulletJ., Massart S., Collini S., Pieraccini G., Lionetti P. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. U. S. A., 2010, vol. 107, no. 33, pp. 14691–14696. DOI: 10.1073/pnas.1005963107
- Holscher H.D. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes, 2017, vol. 8, no. 2, pp. 172–184. DOI: 10.1080/19490976.2017.1290756
- Gentile C.L., Weir T.L. The gut microbiota at the intersection of diet and human health. Science, 2018, vol. 362, no. 6416, pp. 776–780. DOI: 10.1126/science.aau5812
- Garcia-Mantrana I., Selma-Royo M., Alcantara C., Collado M.C. Shifts on gut microbiota associated to mediterranean diet adherence and specific dietary intakes on general adult population. Front. Microbiol, 2018, vol. 7, no. 9, pp. 890. DOI: 10.3389/fmicb.2018.00890
- Colquitt J.L., Pickett K., Loveman E., Frampton G.K. Surgery for weight loss in adults. Cochrane Database of Systematic Reviews, 2014, vol. 2014, no. 8, pp. CD003641. DOI: 10.1002/14651858.CD003641.pub4
- Phillips B.T., Shikora S.A. The history of metabolic and bariatric surgery: Development of standards for patient safety and efficacy. Metabolism: Clinical and Experimental, 2018, no. 79, pp. 97–107. DOI: 10.1016/j.metabol.2017.12.010
- Cortez R.V., Petry T., Caravatto P., Pessôa R., Sanabani S.S., Martinez M.B., Sarian T., Salles J.E., Cohen R., Taddei C.R. Shifts in intestinal microbiota after duodenal exclusion favor glycemic control and weight loss: a randomized controlled trial. Surg. Obes. Relat. Dis, 2018, vol. 14, no. 11, pp. 1748–1754.DOI: 10.1016/j.soard.2018.07.021
- Hibberd A.A., Yde C.C., Ziegler M.L., Honoré A.H., Saarinen M.T., Lahtinen S., Stahl B., Jensen H.M., Stenman L.K. Probiotic or synbiotic alters the gut microbiota and metabolism in a randomised controlled trial of weight management in overweight adults. Benef. Microbes, 2019, vol. 10, no. 2, pp. 121–135. DOI: 10.3920/BM2018.0028
- Payahoo L., Khajebishak Y., Alivand M.R., Soleimanzade H., Alipour S., Barzegari A., Ostadrahimi A. Investigation the effect of oleoylethanolamide supplementation on the abundance of Akkermansia muciniphila bacterium and the dietary intakes in people with obesity: A randomized clinical trial. Appetite, 2019, vol. 1, no. 141, pp. 104301. DOI: 10.1016/j.appet.2019.05.032