Vanadium in the environment as a risk factor causing negative modification of cell death (scientific review)

View or download the full article: 

O.V. Dolgikh, D.G. Dianova, O.A. Kazakova


Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, 82 Monastyrskaya Str., Perm, 614045, Russian Federation


The review dwells on results obtained via examinations that focused on effects produced by vanadium and its compounds contaminating the environment on health disorders related to cell death deregulation.
Research works that have been performed over the last decades and focused on revealing the essence of apoptosis mechanism under exposure to technogenic chemicals are truly vital due to this phenomenon having great biological significance within a system of a body trying to adapt to influences exerted by environmental factors.
The present work focuses on apoptosis peculiarities under exposure to excess technogenic concentrations of vanadium compounds. Published research works have been analyzed, analysis results are outlined, and a scientific hypothesis has been formulated within the subject matter. We have described an immune-modulating effect produced by vanadium compounds that is able to modify apoptosis events due to changes in cell death modes (apoptosis activation/inhibition) and it provides body adaptation to changing environmental conditions.
A range in vanadium concentrations between essential and toxic ones predetermines multi-directional changes in apoptosis induction and completion. Thus, induced apoptosis activation makes for development of autoimmune and immune-proliferative processes; at the same time, cell death inhibition can result in immune deficiency, inflammatory reactions, and neurodegenerative diseases. It was shown that vanadium compounds produced modifying effects on mitochondrial functions regulation, changes in phosphorilation/dephosphorilation ratio in protein products, and imbalance in free radical processes; all this ultimately disrupts a balance between pro- and anti-apoptotic signals in a cell. Monitoring over apoptosis parameters that characterize cell death under exposure to vanadium and its compounds will allow timely detecting risks of pre-nosology state occurrence and prevent damage to health.

risk, vanadium, environment, cell death, apoptosis mechanism, mitochondrial activity modification, free radical oxidation, damage to health
Dolgikh O.V., Dianova D.G., Kazakova O.A. Vanadium in the environment as a risk factor causing negative modification of cell death (scientific review). Health Risk Analysis, 2020, no. 4, pp. 156–169. DOI: 10.21668/health.risk/2020.4.18.eng
  1. Galluzzi L., Vitale I., Aaronson S.A., Abrams J.M., Adam D., Agostinis P., Alnemri E.S., Altucci L. [et al.]. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death & Differentiation, 2018, vol. 25, no. 3, pp. 486–541. DOI: 10.1038/s41418-017-0012-4
  2. Galluzzi L., Bravo-San Pedro J.M., Vitale I., Aaronson S.A., Abrams J.M., Adam D., Alnemri E.S., Altucci L. [et al.]. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death & Differentiation, 2015, vol. 22, no. 1, pp. 58–73. DOI: 10.1038/cdd.2014.137
  3. Zwolak I. Protective effects of dietary antioxidants against vanadium-induced toxicity: A Review. Oxid. Med. Cell. Longev, 2020, vol. 7, no. 2020, pp. 1490316. DOI: 10.1155/2020/1490316
  4. Li J., Jiang M., Zhou H., Jin P., Cheung K.M.C., Chu P.K., Yeung K.W.K. Vanadium dioxide nanocoating induces tumor cell death through mitochondrial electron transport chain interruption. Global Challenges, 2019, vol. 3, no. 3, pp. 1800058. DOI: 0.1002/gch2.201800058
  5. Scalese G., Machado I., Correia I., Pessoa J.C., Bilbao L., Perez-Diaz L., Gambino D. Exploring oxidovanadium (IV) homoleptic complexes with 8-hydroxyquinoline derivatives as prospective antitrypanosomal agents. NJC, 2019, no. 45, pp. 17756–17773. DOI: 10.1039/c9nj02589h
  6. Rehder D. Vanadium. Its role for humans. Met. Ions Life Sci, 2013, no. 13, pp. 139–169. DOI: 10.1007/978-94-007-7500-8_5
  7. Treviño S., Díaz A., Sánchez-Lara E., Sanchez-Gaitan B.L., Perez-Aguilar J.M., González-Vergara E. Vanadium in biological action: chemical, pharmacological aspects, and metabolic implications in diabetes mellitus. Biol. Trace. Elem. Res, 2019, no. 188, pp. 68–98. DOI: 10.1007/s12011-018-1540-6
  8. Rehder D. The role of vanadium in biology. Metallomics, 2015, no. 7, pp. 730–742. DOI: 10.1039/C4MT00304G
  9. Vorob'eva N.M., Fedorova E.V., Baranova N.I. Vanadium: Its biological role, toxicology, and pharmacological applications. Biosfera, 2013, vol. 5, no. 1, pp. 77–96 (in Russian).
  10. Dolgikh O.V., Zaitseva N.V., Dianova D.G. Regulation of apoptotic signal by strontium in immunocytes. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2016, vol. 10, no. 2, pp. 158–161. DOI: 10.1134/S1990747816010049
  11. Alquezar C., Felix J.B., McCandlish E., Buckley B.T., Caparros-Lefebvre D., Karch C.M., Golbe L.I., Kao A.W. Heavy metals contaminating the environment of a progressive supranuclear palsy cluster induce tau accumulation and cell death in cultured neurons. Scientific Reports, 2020, vol. 10, no. 569, pp. 12. DOI: 10.1038/s41598-019-56930-w
  12. Khorsandi K., Kianmehr Z., Hosseinmardi Z., Hosseinzadeh R. Anti-cancer effect of gallic acid in presence of low level laser irradiation: ROS production and induction of apoptosis and ferroptosis. Cancer Cell. Int, 2020, vol. 20, no. 18, pp. 18. DOI: 10.1186/s12935-020-1100-y
  13. Dianova D.G., Dolgikh O.V. Exposure of vanadium as a factor of adverse activation of lymphocytes. Ural'skii meditsinskii zhurnal, 2012, no. 10 (102), pp. 78–80 (in Russian).
  14. Suma P.R.P., Padmanabhan R.A., Telukutla S.R., Ravindran R., Velikkakath A.K.G., Dekiwadia C.D., Paul W., Shenoy S.J. [et al.]. Paradigm of Vanadium pentoxide nanoparticle-induced autophagy and apoptosis in triple-negative breast cancer cells. bioRxiv, 2019, no. 18, pp. 33. DOI: 10.1101/810200
  15. MacGregor J.A., White D.J., Williams A.L. The limitations of using the NTP chronic bioassay on vanadium pentoxide in risk assessments. Regul Toxicol Pharmacol, 2020, no. 113, pp. 104650. DOI: 10.1016/j.yrtph.2020.104650
  16. Adam M.S.S., Elsawy H. Biological potential of oxo-vanadium salicylediene amino-acid complexes as cytotoxic, antimicrobial, antioxidant and DNA interaction. J. Photoch. Photobio. B., 2018, no. 184, pp. 34–43. DOI: 10.1016/j.jphotobiol.2018.05.002
  17. Fedorova E.V., Buryakina A.V., Vorob'eva N.M., Baranova N.I. The vanadium compounds: chemistry, synthesys, insulinomimetic properties. Biomeditsinskaya khimiya, 2014, vol. 60, no. 4, pp. 416–429 (in Russian).
  18. Ma J., Pan L.B., Wang Q., Lin C.Y., Duan X.L., Hou H. Estimation of the daily soil/dust (SD) ingestion rate of children from Gansu Province, China via hand-to-mouth contact using tracer elements. Environ. Geochem. Health, 2018, vol. 40, no. 1, pp. 295–301. DOI: 10.1007/s10653-016-9906-1
  19. Eqani S.A.M.A.S., Tanveer Z.I., Qiaoqiao C., Cincinelli A., Saqib Z., Mulla S.I., Ali N., Katsoyiannis I.A. [et al.]. Occurrence of selected elements (Ti, Sr, Ba, V, Ga, Sn, Tl, and Sb) in deposited dust and human hair samples: implications for human health in Pakistan. ESPR, 2018, vol. 25, no. 13, pp. 12234–12245. DOI: 10.1007/s11356-017-0346-y
  20. Pyatikonnova A.M., Pozdnyakov A.M., Sarkitov Sh.S. Toksicheskoe deistvie vanadiya i ego soedinenii [Toxic effects produced by vanadium and its compounds]. Uspekhi sovremennogo estestvoznaniya, 2013, no. 9, pp. 120 (in Russian).
  21. Korbecki J., Baranowska-Bosiacka I., Gutowska I., Chlubek D. Biochemical and medical importance of vanadium compounds. Acta. Biochim. Pol., 2012, vol. 59, no. 2, pp. 195–200.
  22. Toxicological review of vanadium pentoxide (V2O5) (CAS No. 1314-62-1). In Support of Summary Information on the Integrated Risk Information System (IRIS). Washington, DC, U.S. Environmental Protection Agency Publ., 2011, 210 p.
  23. Scior T., Guevara-Garcia J.A., Do Q.T., Bernard P., Lauferd S. Why antidiabetic vanadium complexes are not in the pipeline of «big pharma» drug research? A Critical Review. Curr Med. Chem, 2016, vol. 23, no. 25, pp. 2874–2891. DOI: 10.2174/0929867323666160321121138
  24. Sanna D., Serra M., Micera G., Garribba E. On the transport of vanadium in blood serum. Inorg. Chem, 2009, vol. 48, no. 13, pp. 5747–5757. DOI: 10.1021/ic802287s
  25. Sanna D., Serra M., Micera G., Garribba E. Speciation of potential anti-diabetic vanadium complexes in real serum samples. J. Inorg. Biochem, 2017, no. 173, pp. 2–65. DOI: 10.1016/j.jinorgbio.2017.04.023
  26. Sanna D., Ugone V., Sciortino G., Buglyó P., Bihari Z., Parajdi Losonczi P.L., Garribba E. Vivo complexes with antibacterial quinolone ligands and their interaction with serum proteins. Dalton Trans, 2018, vol. 47, no. 7, pp. 2164–2182. DOI: 10.1039/c7dt04216g
  27. Rehder D. The (Biological) Speciation of Vanadate (V) as Revealed by 51V NMR – A Tribute on Lage Pettersson and His Work. J. Inorg. Biochem, 2015, vol. 147, pp. 25–31. DOI: 10.1016/j.jinorgbio.2014.12.014
  28. Wang L., Medan D., Mercer R., Overmiller D., Leornard S., Castranova V., Shi X., Ding M. [et al.]. Vanadium-induced apoptosis and pulmonary inflammation in mice: role of reactive oxygen species. J. Cell. Physiol, 2003, vol. 195, no. 1, pp. 99–107. DOI: 10.1002/jcp.10232
  29. Jiang Q.Y.W., Li D., Gu M., Liu K., Dong L., Wang C., Jiang H., W Dai. Sodium orthovanadate inhibits growth and triggers apoptosis of human anaplastic thyroid carcinoma cells in vitro and in vivo. Oncol. Lett, 2019, vol. 17, no. 5, pp. 4255–4262. DOI: 10.1016/S0168-8278(00)80101-4
  30. Irving E., Stoker A.W. Vanadium compounds as PTP inhibitors. Molecules, 2017, vol. 22, no. 12, pp. 2269. DOI: 10.3390/Molecules22122269
  31. Hosseini M.-J., Shaki F., Ghazi-Khansari M., Pourahmad J. Toxicity of vanadium on isolated rat liver mitochondria: A new mechanistic approach. Metallomics, 2013, vol. 5, no. 2, pp. 152–156. DOI: 10.1039/c2mt20198d
  32. Cunha-de Padua M.M., Cadena S.M.S.C., Petkowicz C.L.O., Martinez G.R., Merlin-Rocha M., Merce A.L., Noleto G.R. Toxicity of native and oxovanadium (IV/V) galactomannan complexes on HepG2 cells is related to impairment of mitochondrial functions. Carbohydrate Polymers, 2017, vol. 1, no. 173, pp. 665–675. DOI: 10.1016/j.carbpol.2017.06.027
  33. Zhao Y., Ye L., Liu H., Xia Q., Zhang Y., Yang X., Wang K. Vanadium compounds induced mitochondria permeability transition pore (PTP) opening related to oxidative stress. J. Inorg. Biochem, 2010, vol. 104, no. 4, pp. 371–378. DOI: 10.1016/j.jinorgbio
  34. Dyatlova A.S., Dudkov A.V., Lin'kova N.S., Khavinson V.Kh. Molecular markers of caspase-dependent and mitochondrial apoptosis: the role of pathology and cell senescence. Uspekhi sovremennoi biologii, 2018, vol. 138, no. 2, pp. 126–137 (in Russian).
  35. Rojas-Lemus M., Bizarro-Nevares P., López-Valdez N., González-Villalva A., Guerrero-Palomo G., Cervantes-Valencia M.E., Tavera-Cabrera O., Rivera-Fernández N. [et al.]. Oxidative stress and vanadium. IntechOpen, 2020. Available at: (29.09.2020).
  36. Rivas-García L., Quiles J.L., Varela L.A., Arredondo M., Lopez P., Dieguez A.R., Aranda P., Llopis J. [et al.]. In vitro study of the protective effect of manganese against vanadium-mediated nuclear and mitochondrial DNA damage. Food and Chemical Toxicology, 2019, no. 135, pp. 110900. DOI: 10.1016/j.fct.2019.110900
  37. Starr T.B., Macgregor J.A., Ehman K.D., Kikiforov A.I. Vanadium pentoxide: Use of relevant historical control data shows no evidence for carcinogenic response in F344/N rats. Regul. Toxicol. Pharmacol, 2012, vol. 64, no. 1, pp. 155–160. DOI: 10.1016/j.yrtph.2012.06.017
  38. Gruzewska K., Michno A., Pawelczyk T., Bielarczyk H. Essentiality and toxicity of vanadium supplements in health and pathology. J. Physiol. Pharmacol, 2014, vol. 65, no. 5, pp. 603–611.
  39. Marques M.P.M., Gianolio D., Ramos S., Batista de Carvalho L.A.E., Aureliano M. An EXAFS Approach to the Study of Polyoxometalate–Protein Interactions: The Case of Decavanadate–Actin. Inorg Chem, 2017, vol. 56, no. 18, pp. 10893–10903. DOI: 10.1021/acs.inorgchem.7b01018
  40. Montes M.R., Spiaggi A.J., Monti J.L., Cornelius F., Olesen C., Garrahan P.J., Rossi R.C. Rb(+) occlusion stabilized by vanadate in gastric H(+)/K(+)-ATPase at 25°C. Biochim. Biophys. Acta, 2011, vol. 1808, no. 1, pp. 316–322. DOI: 10.1016/j.bbamem.2010.08.022
  41. He J., Xing J., Yang X., Zhang C., Zhang Y., Wang H., Xu X., Wang H. [et al.]. Silencing of proteasome 26S subunit ATPase 2 regulates colorectal cancer cell proliferation, apoptosis, and migration. Chemotherapy, 2019, vol. 64, no. 3, pp. 146–154. DOI: 10.1159/000502224
  42. Turner T.L., Nguyen V.H., McLauchlan C.C., Dymon Z., Dorsey B.M., Hooker J.D., Jones M.A. Inhibitory effects of decavanadate on several enzymes and Leishmania tarentolae in vitro. J. Inorg. Biochem, 2011, no. 108, pp. 96–104. DOI: 10.1016/j.jinorgbio.2011.09.009
  43. McLauchlan C.C., Peters B.J., Willsky G.R., Crans D.C. Vanadium-phosphatase complexes: Phosphatase inhibitors favor the trigonal bipyramidal transition state geometries. Coord. Chem. Rev, 2015, vol. 301–302, no. 15, pp. 163–199. DOI: 10.1016/j.ccr.2014.12.012
  44. Lu L., Wang S., Zhu M., Liu Z., Guo M., Xing S., Fu X. Inhibition protein tyrosine phosphatases by an oxovanadium glutamate complex, Na2[VO(Glu)2(CH3OH)](Glu = glutamate). Biometals, 2010, vol. 23, no. 6, pp. 1139–1147. DOI: 10.1007/s10534-010-9363-8
  45. Korbecki J., Baranowska-Bosiacka I., Gutowska I., Chlubek D. Vanadium compounds as pro-inflammatory agents: effects on cyclooxygenases. Int. J. Mol. Sci, 2015, vol. 16, no. 6, pp. 12648–12668. DOI: 10.3390/ijms160612648
  46. Gallo M.L., Poissonnier A., Blanco P., Legembre P. CD95/FAS, Non-apoptotic signaling pathways, and kinases. Front. Immunol, 2017, vol. 27, no. 8, pp. 1216. DOI: 10.3389/fimmu.2017.01216
  47. Lingrel J.B. The physiological significance of the cardiotonic steroid/ouabainbinding site of the Na, K-ATPase. Annu. Rev. Physiol, 2010, vol. 17, no. 72, pp. 395–412. DOI: 10.1146/annurev-physiol-021909-135725
  48. Wang J., Huang X., Zhang K., Mao X., Ding X., Zeng Q., Bai S., Xuan Y. [et al.]. Vanadate oxidative and apoptotic effects are mediated by the MAPK-Nrf2 pathway in layer oviduct magnum epithelial cells. Metallomics, 2017, vol. 9, no. 11, pp. 1562–1575. DOI: 10.1039/c7mt00191f
  49. Gallardo-Vera F., Diaz D., Tapia-Rodriguez M., Fortoul G.T., Masso F., Rendon-Huerta E., Montaño L.F. Vanadium pentoxide prevents NK-92MI cell proliferation and IFNγ secretion through sustained JAK3 phosphorylation. J. of Immunotoxicol, 2016, vol. 13, no. 1, pp. 27–37. DOI: 10.3109/1547691X.2014.996681
  50. Guegan J.-P., Legembre P. Nonapoptotic functions of FAS/CD95 in the immuneresponse. FEBS, 2018, vol. 285, no. 5, pp. 809–827. DOI: 10.1111/febs.14292
  51. Xiao K., Liu C., Tu Z., Xu Q., Chen S., Zhang Y., Wang X., Zhang J. [et al.]. Activation of the NF-κB and MAPK signaling pathways contributes to the inflammatory responses, but not cell injury, in IPEC-1 cells challenged with hydrogen peroxide. Oxid. Med. Cell. Longev, 2020, no. 2020, pp. 5803639. DOI: 10.1155/2020/5803639
  52. Yang L., Zheng L., Chng W.J., Ding J.L. Comprehensive analysis of ERK1/2 substrates for potential combination immunotherapies. Trends Pharmacol. Sci, 2019, vol. 40, no. 11, pp. 897–910. DOI: 10.1016/
  53. Wortzel I., Seger R. The ERK cascade: distinct functions within various subcellular organelles. Genes Cancer, 2011, vol. 2, no. 3, pp. 195–209. DOI: 10.1177/1947601911407328
  54. Pisano M., Arru C., Serra M., Galleri G., Sanna D., Garribba E., Palmieri G., Rozzo C. Antiproliferative activity of vanadium compounds: effects on the major malignant melanoma molecular pathways. Metallomics, 2019, vol. 11, no. 10, pp. 1687–1699. DOI: 10.1039/C9MT00174C
  55. Rodrıguez-Berriguete G., Fraile B., Martınez-Onsurbe P., Olmedilla G., Paniagua R., Royuela M. MAP kinases and prostate cancer. J. Signal. Transduction, 2012, no. 2012, pp. 169170. DOI: 10.1155/2012/169170
  56. Misyurin V.A. Structure and functions of main apoptosis receptors and ligands. Rossiiskii bioterapevticheskii zhurnal, 2015, vol. 14, no. 2, pp. 23–30 (in Russian).
  57. Zhang B.J., Gao J.-X., Salojin K., Shao Q., Grattan M., Meagher C., Laird D.W., Delovitch T.L. Regulation of FAS Ligand expression during activationinduced cell death in T cells by p38 mitogen-activated protein kinase and c-Jun NH2-terminal kinase. J. Exp. Med, 2000, vol. 191, no. 6, pp. 1017–1030. DOI: 10.1084/jem.191.6.1017
  58. Jiang Q.Y.W., Li D., Gu M., Liu K., Dong L., Wang C., Jiang H., Dai W. Sodium orthovanadate inhibits growth and triggers apoptosis of human anaplastic thyroid carcinoma cells in vitro and in vivo. Oncol. Lett, 2019, vol. 17, no. 5, pp. 4255–4262. DOI: 10.3892/ol.2019.10090
  59. Aliabad H.B., Falahati-Pour S.K., Ahmadirad H., Mohamadi M., Hajizadeh M.R., Bakhshi G., Mahmoodi M. Vanadium complex induced apoptosis in hepg2 cells by the up-regulation of p53, p21, and caspase-8. WCRJ, 2019, no. 6, pp. e1293. DOI: 10.32113/wcrj_20195_1293
  60. Shioda N., Ishigami T., Han F., Moriguchi S., Shibuya M., Iwabuchi Y., Fukunaga K. Activation of phosphatidylinositol 3-kinase/protein kinase B pathway by a vanadyl compound mediates its neuroprotective effect in mouse brain ischemia. Neuroscience, 2007, vol. 148, no. 1, pp. 221–229. DOI: 10.1016/j.neuroscience.2007.05.040
  61. Markopoulou S., Kontargiris E., Batsi C., Tzavaras T., Trougakos I., Boothman D.A., Gonos E.S., Kolettas E. Vanadium‐induced apoptosis of HaCaT cells is mediated by c‐fos and involves nuclear accumulation of clusterin. FEBS J, 2009, vol. 276, no. 14, pp. 3784–3799. DOI: 10.1111/j.1742-4658.2009.07093.x
  62. Khalil A., Dzhemeson M. Sodium orthovanadate inhibits proliferation and triggers apoptosis in oral squamous cell carcinoma in vitro. Biokhimiya, 2017, vol. 82, no. 2, pp. 258–265 (in Russian).
  63. Kowalski S., Wyrzykowski D., Hac S., Rychlowski M., Radomski M.W., Inkielewicz-Stepniak I. New oxidovanadium (IV) coordination complex containing 2-methylnitrilotriacetate ligands induces cell cycle arrest and autophagy in human pancreatic ductal adenocarcinoma cell lines. IJMS, 2019, vol. 20, no. 2, pp. 261. DOI: 10.3390/ijms20020261
  64. Das S., Roy A., Barui A.K., Alabbasi M.M.A., Kuncha M., Sistla R., Sreedhar B., Patra C.R. Anti-angiogenic vanadium pentoxide nanoparticles for the treatment of melanoma and their in vivo toxicity study. Nanoscale, 2020, vol. 12, no. 14, pp. 7604–7621. DOI: 10.1039/d0nr00631a

You are here