Vanadium in the environment as a risk factor causing negative modification of cell death (scientific review)
O.V. Dolgikh, D.G. Dianova, O.A. Kazakova
Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, 82 Monastyrskaya Str., Perm, 614045, Russian Federation
The review dwells on results obtained via examinations that focused on effects produced by vanadium and its compounds contaminating the environment on health disorders related to cell death deregulation.
Research works that have been performed over the last decades and focused on revealing the essence of apoptosis mechanism under exposure to technogenic chemicals are truly vital due to this phenomenon having great biological significance within a system of a body trying to adapt to influences exerted by environmental factors.
The present work focuses on apoptosis peculiarities under exposure to excess technogenic concentrations of vanadium compounds. Published research works have been analyzed, analysis results are outlined, and a scientific hypothesis has been formulated within the subject matter. We have described an immune-modulating effect produced by vanadium compounds that is able to modify apoptosis events due to changes in cell death modes (apoptosis activation/inhibition) and it provides body adaptation to changing environmental conditions.
A range in vanadium concentrations between essential and toxic ones predetermines multi-directional changes in apoptosis induction and completion. Thus, induced apoptosis activation makes for development of autoimmune and immune-proliferative processes; at the same time, cell death inhibition can result in immune deficiency, inflammatory reactions, and neurodegenerative diseases. It was shown that vanadium compounds produced modifying effects on mitochondrial functions regulation, changes in phosphorilation/dephosphorilation ratio in protein products, and imbalance in free radical processes; all this ultimately disrupts a balance between pro- and anti-apoptotic signals in a cell. Monitoring over apoptosis parameters that characterize cell death under exposure to vanadium and its compounds will allow timely detecting risks of pre-nosology state occurrence and prevent damage to health.
- Galluzzi L., Vitale I., Aaronson S.A., Abrams J.M., Adam D., Agostinis P., Alnemri E.S., Altucci L. [et al.]. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death & Differentiation, 2018, vol. 25, no. 3, pp. 486–541. DOI: 10.1038/s41418-017-0012-4
- Galluzzi L., Bravo-San Pedro J.M., Vitale I., Aaronson S.A., Abrams J.M., Adam D., Alnemri E.S., Altucci L. [et al.]. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death & Differentiation, 2015, vol. 22, no. 1, pp. 58–73. DOI: 10.1038/cdd.2014.137
- Zwolak I. Protective effects of dietary antioxidants against vanadium-induced toxicity: A Review. Oxid. Med. Cell. Longev, 2020, vol. 7, no. 2020, pp. 1490316. DOI: 10.1155/2020/1490316
- Li J., Jiang M., Zhou H., Jin P., Cheung K.M.C., Chu P.K., Yeung K.W.K. Vanadium dioxide nanocoating induces tumor cell death through mitochondrial electron transport chain interruption. Global Challenges, 2019, vol. 3, no. 3, pp. 1800058. DOI: 0.1002/gch2.201800058
- Scalese G., Machado I., Correia I., Pessoa J.C., Bilbao L., Perez-Diaz L., Gambino D. Exploring oxidovanadium (IV) homoleptic complexes with 8-hydroxyquinoline derivatives as prospective antitrypanosomal agents. NJC, 2019, no. 45, pp. 17756–17773. DOI: 10.1039/c9nj02589h
- Rehder D. Vanadium. Its role for humans. Met. Ions Life Sci, 2013, no. 13, pp. 139–169. DOI: 10.1007/978-94-007-7500-8_5
- Treviño S., Díaz A., Sánchez-Lara E., Sanchez-Gaitan B.L., Perez-Aguilar J.M., González-Vergara E. Vanadium in biological action: chemical, pharmacological aspects, and metabolic implications in diabetes mellitus. Biol. Trace. Elem. Res, 2019, no. 188, pp. 68–98. DOI: 10.1007/s12011-018-1540-6
- Rehder D. The role of vanadium in biology. Metallomics, 2015, no. 7, pp. 730–742. DOI: 10.1039/C4MT00304G
- Vorob'eva N.M., Fedorova E.V., Baranova N.I. Vanadium: Its biological role, toxicology, and pharmacological applications. Biosfera, 2013, vol. 5, no. 1, pp. 77–96 (in Russian).
- Dolgikh O.V., Zaitseva N.V., Dianova D.G. Regulation of apoptotic signal by strontium in immunocytes. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2016, vol. 10, no. 2, pp. 158–161. DOI: 10.1134/S1990747816010049
- Alquezar C., Felix J.B., McCandlish E., Buckley B.T., Caparros-Lefebvre D., Karch C.M., Golbe L.I., Kao A.W. Heavy metals contaminating the environment of a progressive supranuclear palsy cluster induce tau accumulation and cell death in cultured neurons. Scientific Reports, 2020, vol. 10, no. 569, pp. 12. DOI: 10.1038/s41598-019-56930-w
- Khorsandi K., Kianmehr Z., Hosseinmardi Z., Hosseinzadeh R. Anti-cancer effect of gallic acid in presence of low level laser irradiation: ROS production and induction of apoptosis and ferroptosis. Cancer Cell. Int, 2020, vol. 20, no. 18, pp. 18. DOI: 10.1186/s12935-020-1100-y
- Dianova D.G., Dolgikh O.V. Exposure of vanadium as a factor of adverse activation of lymphocytes. Ural'skii meditsinskii zhurnal, 2012, no. 10 (102), pp. 78–80 (in Russian).
- Suma P.R.P., Padmanabhan R.A., Telukutla S.R., Ravindran R., Velikkakath A.K.G., Dekiwadia C.D., Paul W., Shenoy S.J. [et al.]. Paradigm of Vanadium pentoxide nanoparticle-induced autophagy and apoptosis in triple-negative breast cancer cells. bioRxiv, 2019, no. 18, pp. 33. DOI: 10.1101/810200
- MacGregor J.A., White D.J., Williams A.L. The limitations of using the NTP chronic bioassay on vanadium pentoxide in risk assessments. Regul Toxicol Pharmacol, 2020, no. 113, pp. 104650. DOI: 10.1016/j.yrtph.2020.104650
- Adam M.S.S., Elsawy H. Biological potential of oxo-vanadium salicylediene amino-acid complexes as cytotoxic, antimicrobial, antioxidant and DNA interaction. J. Photoch. Photobio. B., 2018, no. 184, pp. 34–43. DOI: 10.1016/j.jphotobiol.2018.05.002
- Fedorova E.V., Buryakina A.V., Vorob'eva N.M., Baranova N.I. The vanadium compounds: chemistry, synthesys, insulinomimetic properties. Biomeditsinskaya khimiya, 2014, vol. 60, no. 4, pp. 416–429 (in Russian).
- Ma J., Pan L.B., Wang Q., Lin C.Y., Duan X.L., Hou H. Estimation of the daily soil/dust (SD) ingestion rate of children from Gansu Province, China via hand-to-mouth contact using tracer elements. Environ. Geochem. Health, 2018, vol. 40, no. 1, pp. 295–301. DOI: 10.1007/s10653-016-9906-1
- Eqani S.A.M.A.S., Tanveer Z.I., Qiaoqiao C., Cincinelli A., Saqib Z., Mulla S.I., Ali N., Katsoyiannis I.A. [et al.]. Occurrence of selected elements (Ti, Sr, Ba, V, Ga, Sn, Tl, and Sb) in deposited dust and human hair samples: implications for human health in Pakistan. ESPR, 2018, vol. 25, no. 13, pp. 12234–12245. DOI: 10.1007/s11356-017-0346-y
- Pyatikonnova A.M., Pozdnyakov A.M., Sarkitov Sh.S. Toksicheskoe deistvie vanadiya i ego soedinenii [Toxic effects produced by vanadium and its compounds]. Uspekhi sovremennogo estestvoznaniya, 2013, no. 9, pp. 120 (in Russian).
- Korbecki J., Baranowska-Bosiacka I., Gutowska I., Chlubek D. Biochemical and medical importance of vanadium compounds. Acta. Biochim. Pol., 2012, vol. 59, no. 2, pp. 195–200.
- Toxicological review of vanadium pentoxide (V2O5) (CAS No. 1314-62-1). In Support of Summary Information on the Integrated Risk Information System (IRIS). Washington, DC, U.S. Environmental Protection Agency Publ., 2011, 210 p.
- Scior T., Guevara-Garcia J.A., Do Q.T., Bernard P., Lauferd S. Why antidiabetic vanadium complexes are not in the pipeline of «big pharma» drug research? A Critical Review. Curr Med. Chem, 2016, vol. 23, no. 25, pp. 2874–2891. DOI: 10.2174/0929867323666160321121138
- Sanna D., Serra M., Micera G., Garribba E. On the transport of vanadium in blood serum. Inorg. Chem, 2009, vol. 48, no. 13, pp. 5747–5757. DOI: 10.1021/ic802287s
- Sanna D., Serra M., Micera G., Garribba E. Speciation of potential anti-diabetic vanadium complexes in real serum samples. J. Inorg. Biochem, 2017, no. 173, pp. 2–65. DOI: 10.1016/j.jinorgbio.2017.04.023
- Sanna D., Ugone V., Sciortino G., Buglyó P., Bihari Z., Parajdi Losonczi P.L., Garribba E. Vivo complexes with antibacterial quinolone ligands and their interaction with serum proteins. Dalton Trans, 2018, vol. 47, no. 7, pp. 2164–2182. DOI: 10.1039/c7dt04216g
- Rehder D. The (Biological) Speciation of Vanadate (V) as Revealed by 51V NMR – A Tribute on Lage Pettersson and His Work. J. Inorg. Biochem, 2015, vol. 147, pp. 25–31. DOI: 10.1016/j.jinorgbio.2014.12.014
- Wang L., Medan D., Mercer R., Overmiller D., Leornard S., Castranova V., Shi X., Ding M. [et al.]. Vanadium-induced apoptosis and pulmonary inflammation in mice: role of reactive oxygen species. J. Cell. Physiol, 2003, vol. 195, no. 1, pp. 99–107. DOI: 10.1002/jcp.10232
- Jiang Q.Y.W., Li D., Gu M., Liu K., Dong L., Wang C., Jiang H., W Dai. Sodium orthovanadate inhibits growth and triggers apoptosis of human anaplastic thyroid carcinoma cells in vitro and in vivo. Oncol. Lett, 2019, vol. 17, no. 5, pp. 4255–4262. DOI: 10.1016/S0168-8278(00)80101-4
- Irving E., Stoker A.W. Vanadium compounds as PTP inhibitors. Molecules, 2017, vol. 22, no. 12, pp. 2269. DOI: 10.3390/Molecules22122269
- Hosseini M.-J., Shaki F., Ghazi-Khansari M., Pourahmad J. Toxicity of vanadium on isolated rat liver mitochondria: A new mechanistic approach. Metallomics, 2013, vol. 5, no. 2, pp. 152–156. DOI: 10.1039/c2mt20198d
- Cunha-de Padua M.M., Cadena S.M.S.C., Petkowicz C.L.O., Martinez G.R., Merlin-Rocha M., Merce A.L., Noleto G.R. Toxicity of native and oxovanadium (IV/V) galactomannan complexes on HepG2 cells is related to impairment of mitochondrial functions. Carbohydrate Polymers, 2017, vol. 1, no. 173, pp. 665–675. DOI: 10.1016/j.carbpol.2017.06.027
- Zhao Y., Ye L., Liu H., Xia Q., Zhang Y., Yang X., Wang K. Vanadium compounds induced mitochondria permeability transition pore (PTP) opening related to oxidative stress. J. Inorg. Biochem, 2010, vol. 104, no. 4, pp. 371–378. DOI: 10.1016/j.jinorgbio
- Dyatlova A.S., Dudkov A.V., Lin'kova N.S., Khavinson V.Kh. Molecular markers of caspase-dependent and mitochondrial apoptosis: the role of pathology and cell senescence. Uspekhi sovremennoi biologii, 2018, vol. 138, no. 2, pp. 126–137 (in Russian).
- Rojas-Lemus M., Bizarro-Nevares P., López-Valdez N., González-Villalva A., Guerrero-Palomo G., Cervantes-Valencia M.E., Tavera-Cabrera O., Rivera-Fernández N. [et al.]. Oxidative stress and vanadium. IntechOpen, 2020. Available at: https://www.intechopen.com/online-first/oxidative-stress-and-vanadium (29.09.2020).
- Rivas-García L., Quiles J.L., Varela L.A., Arredondo M., Lopez P., Dieguez A.R., Aranda P., Llopis J. [et al.]. In vitro study of the protective effect of manganese against vanadium-mediated nuclear and mitochondrial DNA damage. Food and Chemical Toxicology, 2019, no. 135, pp. 110900. DOI: 10.1016/j.fct.2019.110900
- Starr T.B., Macgregor J.A., Ehman K.D., Kikiforov A.I. Vanadium pentoxide: Use of relevant historical control data shows no evidence for carcinogenic response in F344/N rats. Regul. Toxicol. Pharmacol, 2012, vol. 64, no. 1, pp. 155–160. DOI: 10.1016/j.yrtph.2012.06.017
- Gruzewska K., Michno A., Pawelczyk T., Bielarczyk H. Essentiality and toxicity of vanadium supplements in health and pathology. J. Physiol. Pharmacol, 2014, vol. 65, no. 5, pp. 603–611.
- Marques M.P.M., Gianolio D., Ramos S., Batista de Carvalho L.A.E., Aureliano M. An EXAFS Approach to the Study of Polyoxometalate–Protein Interactions: The Case of Decavanadate–Actin. Inorg Chem, 2017, vol. 56, no. 18, pp. 10893–10903. DOI: 10.1021/acs.inorgchem.7b01018
- Montes M.R., Spiaggi A.J., Monti J.L., Cornelius F., Olesen C., Garrahan P.J., Rossi R.C. Rb(+) occlusion stabilized by vanadate in gastric H(+)/K(+)-ATPase at 25°C. Biochim. Biophys. Acta, 2011, vol. 1808, no. 1, pp. 316–322. DOI: 10.1016/j.bbamem.2010.08.022
- He J., Xing J., Yang X., Zhang C., Zhang Y., Wang H., Xu X., Wang H. [et al.]. Silencing of proteasome 26S subunit ATPase 2 regulates colorectal cancer cell proliferation, apoptosis, and migration. Chemotherapy, 2019, vol. 64, no. 3, pp. 146–154. DOI: 10.1159/000502224
- Turner T.L., Nguyen V.H., McLauchlan C.C., Dymon Z., Dorsey B.M., Hooker J.D., Jones M.A. Inhibitory effects of decavanadate on several enzymes and Leishmania tarentolae in vitro. J. Inorg. Biochem, 2011, no. 108, pp. 96–104. DOI: 10.1016/j.jinorgbio.2011.09.009
- McLauchlan C.C., Peters B.J., Willsky G.R., Crans D.C. Vanadium-phosphatase complexes: Phosphatase inhibitors favor the trigonal bipyramidal transition state geometries. Coord. Chem. Rev, 2015, vol. 301–302, no. 15, pp. 163–199. DOI: 10.1016/j.ccr.2014.12.012
- Lu L., Wang S., Zhu M., Liu Z., Guo M., Xing S., Fu X. Inhibition protein tyrosine phosphatases by an oxovanadium glutamate complex, Na2[VO(Glu)2(CH3OH)](Glu = glutamate). Biometals, 2010, vol. 23, no. 6, pp. 1139–1147. DOI: 10.1007/s10534-010-9363-8
- Korbecki J., Baranowska-Bosiacka I., Gutowska I., Chlubek D. Vanadium compounds as pro-inflammatory agents: effects on cyclooxygenases. Int. J. Mol. Sci, 2015, vol. 16, no. 6, pp. 12648–12668. DOI: 10.3390/ijms160612648
- Gallo M.L., Poissonnier A., Blanco P., Legembre P. CD95/FAS, Non-apoptotic signaling pathways, and kinases. Front. Immunol, 2017, vol. 27, no. 8, pp. 1216. DOI: 10.3389/fimmu.2017.01216
- Lingrel J.B. The physiological significance of the cardiotonic steroid/ouabainbinding site of the Na, K-ATPase. Annu. Rev. Physiol, 2010, vol. 17, no. 72, pp. 395–412. DOI: 10.1146/annurev-physiol-021909-135725
- Wang J., Huang X., Zhang K., Mao X., Ding X., Zeng Q., Bai S., Xuan Y. [et al.]. Vanadate oxidative and apoptotic effects are mediated by the MAPK-Nrf2 pathway in layer oviduct magnum epithelial cells. Metallomics, 2017, vol. 9, no. 11, pp. 1562–1575. DOI: 10.1039/c7mt00191f
- Gallardo-Vera F., Diaz D., Tapia-Rodriguez M., Fortoul G.T., Masso F., Rendon-Huerta E., Montaño L.F. Vanadium pentoxide prevents NK-92MI cell proliferation and IFNγ secretion through sustained JAK3 phosphorylation. J. of Immunotoxicol, 2016, vol. 13, no. 1, pp. 27–37. DOI: 10.3109/1547691X.2014.996681
- Guegan J.-P., Legembre P. Nonapoptotic functions of FAS/CD95 in the immuneresponse. FEBS, 2018, vol. 285, no. 5, pp. 809–827. DOI: 10.1111/febs.14292
- Xiao K., Liu C., Tu Z., Xu Q., Chen S., Zhang Y., Wang X., Zhang J. [et al.]. Activation of the NF-κB and MAPK signaling pathways contributes to the inflammatory responses, but not cell injury, in IPEC-1 cells challenged with hydrogen peroxide. Oxid. Med. Cell. Longev, 2020, no. 2020, pp. 5803639. DOI: 10.1155/2020/5803639
- Yang L., Zheng L., Chng W.J., Ding J.L. Comprehensive analysis of ERK1/2 substrates for potential combination immunotherapies. Trends Pharmacol. Sci, 2019, vol. 40, no. 11, pp. 897–910. DOI: 10.1016/j.tips.2019.09.005
- Wortzel I., Seger R. The ERK cascade: distinct functions within various subcellular organelles. Genes Cancer, 2011, vol. 2, no. 3, pp. 195–209. DOI: 10.1177/1947601911407328
- Pisano M., Arru C., Serra M., Galleri G., Sanna D., Garribba E., Palmieri G., Rozzo C. Antiproliferative activity of vanadium compounds: effects on the major malignant melanoma molecular pathways. Metallomics, 2019, vol. 11, no. 10, pp. 1687–1699. DOI: 10.1039/C9MT00174C
- Rodrıguez-Berriguete G., Fraile B., Martınez-Onsurbe P., Olmedilla G., Paniagua R., Royuela M. MAP kinases and prostate cancer. J. Signal. Transduction, 2012, no. 2012, pp. 169170. DOI: 10.1155/2012/169170
- Misyurin V.A. Structure and functions of main apoptosis receptors and ligands. Rossiiskii bioterapevticheskii zhurnal, 2015, vol. 14, no. 2, pp. 23–30 (in Russian).
- Zhang B.J., Gao J.-X., Salojin K., Shao Q., Grattan M., Meagher C., Laird D.W., Delovitch T.L. Regulation of FAS Ligand expression during activationinduced cell death in T cells by p38 mitogen-activated protein kinase and c-Jun NH2-terminal kinase. J. Exp. Med, 2000, vol. 191, no. 6, pp. 1017–1030. DOI: 10.1084/jem.191.6.1017
- Jiang Q.Y.W., Li D., Gu M., Liu K., Dong L., Wang C., Jiang H., Dai W. Sodium orthovanadate inhibits growth and triggers apoptosis of human anaplastic thyroid carcinoma cells in vitro and in vivo. Oncol. Lett, 2019, vol. 17, no. 5, pp. 4255–4262. DOI: 10.3892/ol.2019.10090
- Aliabad H.B., Falahati-Pour S.K., Ahmadirad H., Mohamadi M., Hajizadeh M.R., Bakhshi G., Mahmoodi M. Vanadium complex induced apoptosis in hepg2 cells by the up-regulation of p53, p21, and caspase-8. WCRJ, 2019, no. 6, pp. e1293. DOI: 10.32113/wcrj_20195_1293
- Shioda N., Ishigami T., Han F., Moriguchi S., Shibuya M., Iwabuchi Y., Fukunaga K. Activation of phosphatidylinositol 3-kinase/protein kinase B pathway by a vanadyl compound mediates its neuroprotective effect in mouse brain ischemia. Neuroscience, 2007, vol. 148, no. 1, pp. 221–229. DOI: 10.1016/j.neuroscience.2007.05.040
- Markopoulou S., Kontargiris E., Batsi C., Tzavaras T., Trougakos I., Boothman D.A., Gonos E.S., Kolettas E. Vanadium‐induced apoptosis of HaCaT cells is mediated by c‐fos and involves nuclear accumulation of clusterin. FEBS J, 2009, vol. 276, no. 14, pp. 3784–3799. DOI: 10.1111/j.1742-4658.2009.07093.x
- Khalil A., Dzhemeson M. Sodium orthovanadate inhibits proliferation and triggers apoptosis in oral squamous cell carcinoma in vitro. Biokhimiya, 2017, vol. 82, no. 2, pp. 258–265 (in Russian).
- Kowalski S., Wyrzykowski D., Hac S., Rychlowski M., Radomski M.W., Inkielewicz-Stepniak I. New oxidovanadium (IV) coordination complex containing 2-methylnitrilotriacetate ligands induces cell cycle arrest and autophagy in human pancreatic ductal adenocarcinoma cell lines. IJMS, 2019, vol. 20, no. 2, pp. 261. DOI: 10.3390/ijms20020261
- Das S., Roy A., Barui A.K., Alabbasi M.M.A., Kuncha M., Sistla R., Sreedhar B., Patra C.R. Anti-angiogenic vanadium pentoxide nanoparticles for the treatment of melanoma and their in vivo toxicity study. Nanoscale, 2020, vol. 12, no. 14, pp. 7604–7621. DOI: 10.1039/d0nr00631a