Developing new approaches to hyperlipidemia correction taking into account changes in fatty acids structure of blood serum

View or download the full article: 
UDC: 
616-008,6;612.2
Authors: 

D.M. Azizova1, I.R. Mavlyanov2, R.A. Sabirova1, M.U. Kulmanova1, A.B. Soliev2, G.Zh. Zharylkasynova3

Organization: 

1Tashkent Medical Academy, 2 Farobi Str., Tashkent, 100109, Uzbekistan
2Republican Scientific and Practical Center for Sport Medicine at the National Olympic Committee of Uzbekistan, 6 Almazar Str., Tashkent, 100027, Uzbekistan
3Bukhara State Medical Institute named after Abu Ali ibn Sino, 1 Navoi Ave., Bukhara, 200118, Uzbekistan

Abstract: 

It is still a pressing issue in contemporary medicine to examine pathogenesis mechanisms and update procedures aimed at treating atherosclerosis. Developments by domestic and foreign researchers revealed that complex molecular and cellular studies on a mechanism of impacts exerted by vegetative-based medications, produced both domestically and abroad and used to treat atherosclerosis, were of primary importance in practical medicine in terms of educing population health risks. It is assumed that disorders in formation and transfer of non-esterified fatty acids (NEFA) in blood plasma are a major reason for hypertriglyceridemia occurrence.
The article contains research data on lipid metabolism parameters taken in dynamics of experimental hypercholesterolemia development. Performed research allowed revealing hypolipidemic effects produced by a biologically active additive called Biomays. We developed theoretical grounds for recommendations that should be given to patients suffering from hyperlipidemia and not getting proper therapeutic effects form treatment with statins. We recommend a complex approach which includes a BAA (biologically active additive) Biomays made of dried wheat sprouts in order to reduce risks caused by complications related to treatment with statins.
Our research goal was to develop new approaches to correcting hyperlipidemia basing on changes in fatty acids structure of blood serum.
The experiments were performed on 30 male rabbits belonging to chinchilla breed with initial body mass equal to 2,500–3,00 grams; animals were divided into 5 groups, 6 animals in each, depending on a research goal and treatment procedures. We started a 30-day treatment of experimental animals with ultrox and Biomays in doses equal to 0.6 mg/kg and 142 mg/kg accordingly after they had been given cholesterol for 2 months. We determined fatty acids structure of blood serum with a triple quadrupole chromato-mass-spectrometer with gas chromatographer (GC-MS/MS) TRACE 1310 TSQ 8000 and automated autosampler CTC TriPlus RSH produced by Thermo Fisher Scientific (the USA).Combined application of ultrox and Biomays led to more significant hypolipidemic effects. Use of statins and wheat sprouts had a distinct positive effect on contents of saturated and poly-unsaturated fatty acids n blood such as linoleic acid and linolenic acid.

Keywords: 
fatty acids, water-soluble vitamins, policosanol, Biomays biologically active additive, mass-spectrometry, gas chromatography, hyperlipidemia
Azizova D.M., Mavlyanov I.R., Sabirova R.A., Kulmanova M.U., Soliev A.B., Zharylkasynova G.Zh. Developing new approaches to hyperlipidemia correction taking into account changes in fatty acids structure of blood serum. Health Risk Analysis, 2020, no. 2, pp. 152–163. DOI: 10.21668/health.risk/2020.2.17.eng
References: 
  1. Oganov R.G. Profilaktika serdechno-sosudistykh zabolevanii vracha obshchei praktiki [Prevention of cardiovascular diseases by a general practitioner]. Kardiologiya Uzbekistana, 2006, no. 1, pp. 17–20 (in Russian).
  2. Graham I., Atar D., Borch-Johnsen K., Boysen G., Burell G., Cifkova R., Dallongeville J., De Backer G. [et al.]. European Guidelines on Cardiovascular Disease Prevention in Clinical Practice: Executive Summary: Fourth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (Constituted by Representatives of Nine Societies and by Invited Experts). Eur. Heart. J, 2007, vol. 28, no. 19, pp. 2375–2414. DOI: 10.1093/eurheartj/ehm316
  3. Grundy S.M., Cleeman J.I., Merz C.N., Brewer Jr. H.B., Clark L.T., Hunninghake D.B., Pasternak R.C., Smith Jr. S.C. [et al.]. Implications of Recent Clinical Trials for the National Cholesterol Education Program Adult Treatment Panel III Guidelines. Circulation, 2004, vol. 110, no. 2, pp. 227–239. DOI: 10.1161/01.CIR.0000133317.49796.0E
  4. Innis S.M., Green T.J., Halsey T.K. Variability in the trans fatty acid content of foods within a food category: implications for estimation of dietary trans fatty acid intakes. J Am Coll Nutr, 1999, no. 18, pp. 255–260. DOI: 10.1080/07315724.1999.10718860
  5. Kavanagh K., Jones K.L., Sawyer J., Kelley K., Carr J.J., Wagner J.D., Rudel L.L. Trans fat diet induces abdominal obesity and changes in insulin sensitivity in monkeys. Obesity (Silver Spring), 2007, vol. 15, no. 7, pp. 1675–1684. DOI: 10.1038/oby.2007.200
  6. Titov V.N. Phylogenetically theory of general pathology, nutritive disturbance is the basis of metabolic syndrome pathogenesis, overeating syndrome. Leptin and adiponectin role. Eur J Med, 2013, vol. 1, no. 1, pp. 48–60. DOI: 10.13187/ejm.2013.1.48
  7. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA, 2001, vol. 285, no. 19, pp. 2486–2497. DOI: 10.1001/jama.285.19.2486
  8. Van Tol A., Zock P.L., Van Gent T., Scheek L.M., Katan M.B. Dietary trans fatty acids increase serum cholesterylester transfer protein activity in man. Atherosclerosis, 1995, vol. 115, no. 1, pp. 129–134. DOI: 10.1016/0021-9150(94)05509-h
  9. Zarodysh pshenitsy [Wheat germ]. MIRAGRO. Available at: http://miragro.com/zarodysh-zhizni-vitazar.html (02.09.2014).
  10. Erkkilä A.T., Lichtenstein A.H., Mozaffarian D., Herrington D.M. Fish intake is associated with a reduced progression of сoronary artery atherosclerosis in postmenopausal women with coronary artery disease. Am J Clin Nutr, 2004, vol. 80, no. 3, pp. 626–632. DOI: 10.1093/ajcn/80.3.626
  11. Titov V.N., Lisitsyn D.M. Plasma content of cholesterol and glycerol alcohols depends on the number of fatty acid double bonds in lipoprotein lipid pool. Bull Exp Biol Med, 2006, vol. 142, no. 5, pp. 577–580. DOI: 10.1007/s10517-006-0422-7
  12. Guseva D.A., Prozorovskaya N.N., Shironin A.V. Antioksidantnaya aktivnost' rastitel'nykh masel s raznym sootnosheniem omega-6 i omega-3 zhirnykh kislot [Antioxidant activity of vegetable oils with different proportions of omega-6 and omega-3 fatty acids]. Biomeditsinskaya khimiya, 2010, no. 3, pp. 342–350 (in Russian).
  13. Kurbanov R.D. Perspektivy razvitiya kardiologii v Uzbekistane [Cardiology in Uzbekistan: prospects of development]. Meditsinskii zhurnal Uzbekistana, 2002, no. 2 (3), pp. 10–12 (in Russian).
  14. Makarov V.I., Belyakov N.A. Produkty pitaniya funktsional'nogo naznacheniya. Metody lecheniya [Functional food products. Treatment procedures]. Arkhangel'sk, Severo-Zapadnoe izdatel'stvo Publ., 2013, 462 p.
  15. Issledovanie effektivnosti masla zarodyshei pshenitsy [Research on efficiency of wheat germ oil]. Moscow, GU Gorodskaya poliklinika № 230 Publ., 2004, 2 p.
  16. Dashti N., Feng Q., Freeman M.R., Gandhi M., Franklin F.A. Trans polyunsaturated fatty acids have more adverse effects than saturated fatty acids on the concentration and composition of lipoproteins secreted by human hepatoma HepG2 cells. J Nutr, 2002, vol. 132, no. 9, pp. 2651–2659. DOI: 10.1093/jn/132.9.2651
  17. Mariscalco G., Sarzi Braga S., Banach M., Borsani P., Bruno V.D., Napoleone M., Vitale C., Piffaretti G. [et al.]. Preoperative n-3 polyunsatured fatty acids are associated with a decrease in the incidence of early atrial fibrillation following cardiac surgery. Angiology, 2010, vol. 61, no. 7, pp. 643–650. DOI: 10.1177/0003319710370962
  18. Chazov E.I. Problemypervichnoiivtorichnoiprofilaktikiserdechno-sosudistykhzabolevanii v Rossiii SNG [Issues related to primary and secondary prevention of cardiovascular diseases in Russia and CIS countries]. Kardiologiya Uzbekistana, 2006, no. 1, pp. 15–17 (in Russian).
  19. Arruzazabala M., Carbajal D., Molina V. Effect of policosanol on cerebral ischemia in Mongolian gerbils: Role of prostacyclin and thromboxane Az. Prostaglandins. Leuko. Essent. Fatty Acids, 2012, vol. 49, no. 3, pp. 695–697. DOI: 10.1016/0952-3278(93)90080-g
  20. Arruzazabala M., Valdes S., Mas R. Effect of policosanol successive dose increase in platelet aggregation healthy volunteers. Pharmacol. Res, 2013, vol. 34, no. 5–6, pp. 181–185. DOI: 10.1006/phrs.1996.0086
  21. Ragino Yu.I., Vavilin V.A., Salakhutdinov N.F., Makarova S.I., Stakhneva E.M., Safronova O.G. Izuchenie antiaterogennykh effektov simvagli na modeli giperkholesterinemii u krolikov [Studies on anti-atherogenic effects produced by simvagli on model hypercholesterolemia in rabbits]. Ateroskleroz, vol. 6, no. 1, pp. 5–11 (in Russian).
  22. Lee H.Y., Woo J., Chen Z.Y., Leung S.F., Peng X.H. Serum fatty acid, lipid profile and dietary intake of Hong Kong Chinese omnivores and vegetarians. Eur J Clin Nutr, 2000, vol. 54, no. 10, pp. 768–773. DOI: 10.1038/sj.ejcn.1601089
  23. Ariel A., Serhan C. Resolvins and protectins in the termination program of acute inflammation. Trends Immunol, 2011, vol. 28, no. 4, pp. 176–183.
  24. Arruzazabala M., Carbajal D., Mas R. Comparative study of policosanol, aspirin and the combination therapy policosanol-aspirin on platelet aggregation in healthy volunteers. Pharmacol. Res, 2010, vol. 36, no. 4, pp. 293–297. DOI: 10.1006/phrs.1997.0201
  25. Anichkov N.N., S.S. Khalatov. Novye dannye po voprosu o patologii i etiologii ateroskleroza [New data on atherosclerosis pathology and etiology]. Russkii vrach, 1913, no. 8, pp. 184–186 (in Russian).
  26. Azizova D.M., Sabirova R.A., Kulmanova M.U. Effects of biomaise on aterogenic plasma index during the development of experimental hyperholesterynemia. Meditsinskie novosti, 2019, no. 7, pp. 78–80 (in Russian).
  27. Lankin V.Z., Tikhaze A.K., Kukharchuk V.V. Antioksidanty v profilaktike i kompleksnoi terapii ateroskleroza [Antioxidants in preventing and complex treatment of atherosclerosis]. Fundamental'nye issledovaniya i progress kardiologii: sbornik trudov nauchnoi sessii. Moscow, Mash-mir Publ., 2002, pp. 141–146 (in Russian).
  28. Brochot A., Guinot M., Auchere D. Effects of alpha-linolenic acid vs. docosahexaenoic acid supply on the distribution of fatty acids among the rat cardiac subcellular membranes after a short- or long-term dietary exposure. Nutr Metab (Lond), 2013, vol. 10, no. 3, pp. 115–119. DOI: 10.1186/1743-7075-6-14
  29. Lefevre M., Champagne C.M., Tulley R.T., Rood J.C., Most M.M. Individual variability in cardiovascular disease risk factor responses to low-fat and low-saturated-fat diets in men: body mass index, adiposity, and insulin resistance predict changes in LDL cholesterol. Am J Clin Nutr, 2005, vol. 82, no. 5, pp. 957–963. DOI: 10.1093/ajcn/82.5.957
  30. Hippisley-Cox J., Coupland C. Unintended effects of statins in men and women in England and Wales: population based cohort study using the Q Research database. BMJ, 2010, vol. 340, pp. 2197. DOI: 10.1136/bmj.c2197
  31. Mozaffarian D., Cao H., King I.B., Lemaitre R.N., Song X., Siscovick D.S., Hotamisligil G.S. Trans-palmitoleic acid, metabolic risk factors, and new-onset diabetes in U.S. adults: a cohort study. Ann Intern Med, 2010, vol. 153, no. 12, pp. 790–799. DOI: 10.7326/0003-4819-153-12-201012210-00005
  32. Kon' I.Ya. Ispol'zovanie polinenasyshchennykh zhirnykh kislot v pitanii zdorovykh detei [Use of poly-unsaturated fatty acids in food provided for healthy children]. Lechashchii vrach, 2011, no. 1, pp. 42–47 (in Russian).
  33. Gapparov M.G. Funktsional'nye produkty pitaniya [Functional food products]. Pishchevaya promyshlennost', 2013, no. 3, pp. 11–12 (in Russian).
  34. Titov V.N., Amelyushkina V.A., Rozhkova T.A. The conformation of apob-100 in phylogenetically and functionally different lipoproteins of low and very low density: algorithm of formation of phenotypes of hyper lipoproteinimia (a lecture). Klinicheskaya laboratornaya diagnostika, 2014, no. 1, pp. 27–38 (in Russian).
  35. Mazidi M., Gao H.K., Vatanparast H., Kengne A.P. Impact of the dietary fatty acid intake on C-reactive protein levels in US adults. Medicine (Baltimore), 2017, vol. 96, no. 7, pp. e5736. DOI: 10.1097/MD.0000000000005736
  36. Mozaffarian D., De Oliveira Otto M.C., Lemaitre R.N., Fretts A.M., Hotamisligil G., Tsai M.Y., Siscovick D.S., Nettleton J.A. Trans-Palmitoleic acid, other dairy fat biomarkers, and incident diabetes: the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Clin Nutr, 2013, vol. 97, no. 4, pp. 854–861. DOI: 10.3945/ajcn.112.045468
  37. Mazidi M., Michos E.D., Banach M. The association of telomere length and serum 25-hydroxyvitamin D levels in US adults: the National Health and Nutrition Examination Survey. Arch Med Sci, 2017, vol. 13, no. 1, pp. 61–65. DOI: 10.5114/aoms.2017.64714
  38. Mensink R.P., Zock P.L., Kester A.D., Katan M.B. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. Am J Clin Nutr, 2003, vol. 77, no. 5, pp. 1146–1155. DOI: 10.1093/ajcn/77.5.1146
  39. Klein-Platat C., Drai J., Oujaa M., Schlienger J.L., Simon C. Plasma fatty acid composition is associated with the metabolic syndrome and low-grade inflammation in overweight adolescents. Am J Clin Nutr, 2005, vol. 82, no. 6, pp. 1178–1184. DOI: 10.1093/ajcn/82.6.1178
  40. Arruzazabala M., Carbajal D., Molina V. Effect of policosanol on cerebral ischcmia in mongolian gerbils: Role of prostacyclin and thromboxane Az. Prostaglandins Leukot & Essent. Fatty Acids, 2012, vol. 49, pp. 695–697.
  41. Micha R., Mozaffarian D. Trans fatty acids: effects on metabolic syndrome, heart disease and diabetes. Nat Rev Endocrinol, 2009, vol. 5, no. 6, pp. 335–344. DOI: 10.1038/nrendo.2009.79
  42. Vega-Lopez S., Ausman L.M., Jalbert S.M., Erkkila A.T., Lichtenstein A.H. Palm and partially hydrogenated soybean oils adversely alter lipoprotein profiles compared with soybean and canola oils in moderately hyperlipidemic subjects. Am J Clin Nutr, 2006, vol. 84, no. 1, pp. 54–62. DOI: 10.1093/ajcn/84.1.54
  43. Von Schacky C., Angerer P., Kothny W., Mudra H. The effect of dietary omega-3 fatty acids on coronary atherosclerosis. A randomized, double-blind, placebo-controlled trial. Ann Intern Med, 1999, vol. 130, no. 7, pp. 554–622. DOI: 10.7326/0003-4819-130-7-199904060-00003
  44. Chajes V., Thiebaut A.C., Rotival M., Gauthier E., Maillard V., Boutron-Ruault M.-C., Joulin V., Lenoir G.M., Clavel-Chapelon F. Association between serum trans-monounsaturated fatty acids and breast cancer risk in the E3N-EPIC Study. Am J Epidemiol, 2008, vol. 167, pp. 1312–1320. DOI: 10.1093/aje/kwn069
  45. Imamura F., Micha R., Wu J.H., De Oliveira Otto M.C., Otite F.O., Abioye A.I., Mozaffarian D. Effects of saturated fat, polyunsaturated fat, monounsaturated fat, and carbohydrate on glucose-insulin homeostasis: a systematic review and metaanalysis of Randomised Controlled Feeding Trials. PLoS Med, 2016, vol. 13, no. 7, pp. e1002087. DOI: 10.1371/journal.pmed.1002087
  46. Mazidi M., Kengne A.P., Banach M. Mineral and vitamins consumption is associated with longer telomeres among US adults. Pol Arch Med Wewn, 2017, vol. 127, no. 2, pp. 87–90. DOI: 10.20452/pamw.3927
Received: 
24.03.2020
Accepted: 
13.06.2020
Published: 
30.06.2020

You are here