Assessing endothelium resistance to thrombus formation as a potential risk factor causing recurrent cardiovascular events in young patients after cardiac infarction

View or download the full article: 
UDC: 
616.127–005.8–053.7–059:[616.12–02:616.151.5]–07:616.12–018.74
Authors: 

I.A. Novikova, L.A. Nekrutenko, T.M. Lebedeva, A.V. Khachatryan

Organization: 

Perm State Medical University named after Academician E.A. Wagner, 26 Petropavlovskaya Str., Perm, 614000, Russian Federation

Abstract: 

Cardiac infarction is considered a disease more common for elderly people; despite that, up to 10% of all cardiac infarctions occur at a young age. Cardiac infarction has grave consequences both for mental health and future working capability of patients who had it. Approximately 15% patients who have had cardiac infarction have to face a recurrent cardiovascular event based on thrombus formation in spite of therapy. Our research goal was to assess endothelium homeostasis in patients after cardiac infarction being treated with double anti-thrombocyte therapy during out-patient rehabilitation and to reveal potential risks that could cause recurrent cardiovascular diseases. Overall, we examined 25 people aged from 18 to 45 who had cardiac infarction and were treated with invasive therapy aimed at eliminating ischemic heart disease. The therapy was emergency percutaneous coronary intervention and coronary artery stenting performed at Perm Clinical Cardiologic Clinic during a period from September 2018 to March 2019. Endothelial homeostasis was examined in 12 months after cardiac infarction.
We detected that, together with conventional risk factors, young patients after cardiac infarction had apparent changes in coagulation homeostasis (shorter activated partial thromboplastin time, shorter prothrombin time, an increase in fibrinogen concentration; greater aggregative activity of thrombocytes with adenosine-diphosphate; depressed Hageman-factor-dependent fibrinolysis. Nevertheless, there was no significant difference in aggregative activity of thrombosytes with ristocetin between the test and control groups. Therefore, in 12 months after cardiac infarction, young patients still ran high risks of recurrent cardiovascular events; those risks were caused both by significant prevalence of conventional risk factors and by high thrombogenic risk that persisted in spite of relevant anti-thrombus therapy.

Keywords: 
cardiac infarction, young patients, recurrent cardiovascular events, risk factors, endothelial homeostasis, hyper-coagulation, thrombosis
Novikova I.A., Nekrutenko L.A., Lebedeva T.M., Khachatryan A.V. Assessing endothelium resistance to thrombus formation as a potential risk factor causing recurrent cardiovascular events in young patients after cardiac infarction. Health Risk Analysis, 2020, no. 2, pp. 117–125. DOI: 10.21668/health.risk/2020.2.13.eng
References: 
  1. Mathers C.D., Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med, 2006, vol. 3, no. 11, pp. 2011–2030. DOI: 10.1371/journal.pmed.0030442
  2. Doughty M., Mehta R., Bruckman D., Das S., Karavite D., Tsai T., Eagle K. Acute myocardial infarction in the young – the University of Michigan experience. Am. Heart J., 2002, no. 143, pp. 56–62. DOI: 10.1067/mhj.2002.120300
  3. Imazio M., Bobbio M., Bergerone S., Barlera S., Maggioni A.P. Clinical and epidemiological characteristics of juvenile myocardial infarction in Italy: the GISSI experience. G. Ital. Cardiol, 1998, no. 28, pp. 505–512.
  4. Risgaard B., Nielsen J.B., Jabbari R., Haunsø S., Gaarsdal Holst A., Winkel B.G., Tfelt-Hansen J. Prior myocardial infarction in the young: predisposes to a high relative risk but low absolute risk of a sudden cardiac death. Europace, 2013, 15, pp. 48–54. DOI: 10.1093/europace/eus190
  5. Cardiovascular diseases (CVDs). World Health Organization, 2017. Available at: http://www.who.int/mediacentre/factsheets/fs317/en/ (26.11.2019).
  6. Giustino G., Mehran R., Dangas G.D., Kirtane A.J., Redfors B., Généreux P., Brener S.J., Prats J. [et al.]. Characterization of the average daily ischemic and bleeding risk after primary PCI for STEMI. J. Am. Coll. Cardiol, 2017, no. 70, pp. 1846–1857. DOI: 10.1016/j.jacc.2017.08.018
  7. Okafor O., Gorog D. Endogenous fibrinolysis: an important mediator of thrombus formation and cardiovascular risk. J. Am. Coll. Cardiol, 2015, no. 65, pp. 1683–1699.DOI: 10.1016/j.jacc.2015.02.040
  8. Leander K., Blomback M., Walle´n H., He S. Impaired fibrinolytic capacity and increased fibrin formation associate with myocardial infarction. Thromb. Haemost, 2012, no. 107, pp. 1092–1099. DOI: 10.1160/TH11-11-0760
  9. Davignon J., Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation, 2004, no. 109, pp. 327–332. DOI: 10.1161/01.CIR.0000131515.03336.f8
  10. Borissoff J.I., Spronk H.M., ten Cate H. The hemostatic system as a modulator of atherosclerosis. N. Engl. J. Med., 2011, vol. 364, no. 18, pp. 1746–1760. DOI: 10.1056/NEJMra1011670
  11. Van Gils J.M., Zwaginga J.J., Hordijk P.L. Molecular and functional interactions among monocytes, platelets, and endothelial cells and their relevance for cardiovascular diseases. J. Leukoc. Biol., 2009, vol. 85, no. 2, pp. 195–204. DOI: 10.1189/jlb.0708400
  12. Jin R.C., Voetsch B., Loscalzo J. Endogenous mechanisms of inhibition of platelet function. Microcirculation, 2005, vol. 12, no. 3, pp. 247–258. DOI: 10.1080/10739680590925493
  13. Yago T., Lou J., Wu T., Yang J., Miner J.J., Coburn L., López J.A., Cruz M.A. [et al.]. Platelet glycoprotein Ibalpha forms catch bonds with human WT vWF but not with type 2B von Willebrand disease vWF. J. Clin. Invest, 2008, vol. 118, no. 9, pp. 3195–3207. DOI: 10.1172/JCI35754
  14. Ruggeri Z.M. Von Willebrand factor, platelets and endothelial cell interactions. J. Thromb. Haemost, 2003, vol. 1, no. 7, pp. 1335–1342. DOI: 10.1046/j.1538-7836.2003.00260.x
  15. Kanaji S., Fahs S.A., Shi Q., Haberichter S.L., Montgomery R.R. Contribution of platelet vs. endothelial VWF to platelet adhesion and hemostasis. J. Thromb. Haemost, 2012, no. 10, pp. 1646–1652. DOI: 10.1111/j.1538-7836.2012.04797.x
  16. Yee A., Kretz C.A. Von Willebrand factor: form for function. Semin. Thromb. Hemost, 2014, no. 40, pp. 17–27. DOI: 10.1055/s-0033-1363155
  17. Boos C.J., Jaumdally R.J., MacFadyen R.J., Varma C., Lip G.Y.H. Circulating endothelial cells and von Willebrand factor as indices of endothelial damage/dysfunction in coronary artery disease: a comparison of central vs. peripheral levels and effects of coronary angioplasty. J. Thromb. Haemost, 2007, no. 5, pp. 630–632. DOI: 10.1111/j.1538-7836.2007.02341.x
  18. Pinsky D.J., Naka Y., Liao H., Oz M.C., Wagner D.D., Mayadas T.N., Johnson R.C., Hynes R.O. [et al.]. Hypoxia-induced exocytosis of endothelial cell Weibel-Palade bodies. A mechanism for rapid neutrophil recruitment after cardiac preservation. J. Clin. Invest, 1996, no. 97, pp. 493–500. DOI: 10.1172/JCI118440
  19. Zezos P., Papaioannou G., Nikolaidis N., Vasiliadis T., Giouleme O., Evgenidis N. Elevated plasma von Willebrand factor levels in patients with active ulcerative colitis reflect endothelial perturbation due to systemic inflammation. World J. Gastroenterol, 2005, no. 11, pp. 7639–7645. DOI: 10.3748/wjg.v11.i48.7639
  20. Lenting P.J., Christophe O.D., Denis C.V. Von Willebrand factor biosynthesis, secretion, and clearance: connecting the far ends. Blood, 2015, vol. 125, no. 13, pp. 2019–2028. DOI: 10.1182/blood-2014-06-528406
  21. Li Z., Delaney M.K., O'Brien K.A., Du X. Signaling during platelet adhesion and activation. Arterioscler. Thromb. Vasc. Biol., 2010, vol. 30, no. 12, pp. 2341–2349. DOI: 10.1161/ATVBAHA.110.207522
  22. Collet J.P., Allali Y., Lesty C., Tanguy M.L., Silvain J., Ankri A., Blanchet B., Dumaine R. [et al.]. Altered fibrin architecture is associated with hypofibrinolysis and premature coronary atherothrombosis. Arterioscler. Thromb. Vasc. Biol., 2006, vol. 26, pp. 2567–2573. DOI: 10.1161/01.ATV.0000241589.52950.4c
  23. McMullen B.A., Fujikawa K. Amino acid sequence of the heavy chain of human a-factor XIIa (activated Hageman factor). J. Biol. Chem, 1985, no. 260, pp. 5328–5341.
  24. Binnema D.J., Dooijewaard G., Turion P.N.C. An analysis of the activators of single-chain urokinase-type plasminogen activator (scu-PA) in the dextran sulphateeuglobulin fraction of normal plasma and of plasmas deficient in factor XII and prekallikrein. Thromb. Haemost, 1991, no. 65, pp. 144–148. DOI: 10.1055/s-0038-1647473
  25. Fuhrer G., Gallimore M.J., Heller W., Hoffmeister H.E. FXII. Blut, 1990, no. 61, pp. 258–266. DOI: 10.1007/BF01732874
  26. Ganyukov V.I., Shilov A.A., Bokhan N.S., Moiseenkov G.V., Barbarash L.S. Prichiny trombozov stentov koronarnykh arterii [Reasons for thrombosis in coronary artery stents]. Mezhdunarodnyi Zhurnal interventsionnoi kardioangiologii, 2012, no. 28, pp. 29–34 (in Russian).
  27. Kukes V.G. Klinicheskaya farmakologiya [Clinical pharmacology]. Moscow, GEOTAR-Media Publ., 2008, pp. 392–395 (in Russian).
  28. Thygesen K., Alpert J.S., Jaffe A.S., Chaitman B.R., Bax J.J., Morrow D.A., White H.D. [et al.]. Fourth universal definition of myocardial infarction. European Heart Journal, 2018, vol. 13, no. 138 (20), pp. e618–e651. DOI: 10.1161/CIR.0000000000000617
  29. Kurtul A., Yarlioglues M., Murat S.N., Duran M., Oksuz F., Koseoglu C., Celik I.E., Kilic A. [et al.]. The association of plasma fibrinogen with the extent and complexity of coronary lesions in patients with acute coronary syndromes. Kardiol. Pol., 2016, no. 74, pp. 338–345. DOI: 10.5603/KP.a2015.0196
  30. Lupi A., Secco G.G., Rognoni A., Rossi L., Lazzero M., Nardi F., Rolla R., Bellomo G. [et al.]. Plasma fibrinogen levels and restenosis after primary percutaneous coronary intervention. J. Thromb. Thrombolysis, 2012, no. 33, pp. 308–317. DOI: 10.1007/s11239-011-0628-z
  31. Mahmud E., Behnamfar O., Lin F., Reeves R., Patel M., Ang L. [et al.]. Elevated serum fibrinogen is associated with 12-month major adverse cardiovascular events following percutaneous coronary intervention. J. Am. Coll. Cardiol, 2016, no. 67, pp. 2556–2557. DOI: 10.1016/j.jacc.2016.03.540
  32. Trip M.D., Cats V.M., Van Capelle F.J., Vreeken J. Platelet hyperreactivity and prognosis in survivors of myocardial infarction. N. Engl. J. Med., 1990, no. 322, pp. 1549–1554. DOI: 10.1056/NEJM199005313222201
  33. Gurbel P.A., Becker R.C., Mann K.G., Steinhubl S.R., Michelson A.D. Platelet function monitoring in patients with coronary artery disease. J. Am. Coll. Cardiol., 2007, no. 50, pp. 1822–1834. DOI: 10.1016/j.jacc.2007.07.051
  34. Wiviott S.D., Braunwald E., McCabe C.H., Montalescot G., Ruzyllo W., Gottlieb S., Neumann F.-J., Ardissino D. [et al.]. TRITON-TIMI 38 Investigators. Prasugel versus clopidogrel in patients with acute coronary syndromes. N. Engl. J. Med., 2007, no. 357, pp. 2001–2015. DOI: 10.1056/NEJMoa0706482
  35. Wallentin L., Becker R.C., Budaj A., Cannon C.P., Emanuelsson H., Held C., Horrow J., Husted S. [et al.]. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N. Engl. J. Med., 2009, no. 361, pp. 1045–1057. DOI: 10.1056/NEJMoa0904327
  36. Stuckey T.D., Kirtane A.J., Brodie B.R.,Witzenbichler B., Litherland C., Weisz G., Rinaldi M.J., Neumann F.-J. [et al.]. Impact of aspirin and clopidogrel hypo responsiveness in patients treated with drug-eluting stents: 2-year results of a prospective, multicenter registry study. JACC Cardiovasc. Interv., 2017, no. 10, pp. 1607–1617. DOI: 10.1016/j.jcin.2017.05.059
  37. Wang X., Zhao J., Zhang Y., Xue X., Yin J., Liao L., Xu C., Hou Y. [et al.]. Kinetics of plasma von Willebrand factor in acute myocardial infarction patients: a meta-analysis. Oncotarget, 2017, vol. 8, no. 52, pp. 90371–90379. DOI: 10.18632/oncotarget.20091
  38. Sambola A., García Del Blanco B., Ruiz-Meana M., Francisco J., Barrabés J.A., Figueras J., Bañeras J., Otaegui I. [et al.]. Increased von Willebrand factor, P-selectin and fibrin content in occlusive thrombus resistant to lytic therapy. Thromb. Haemost, 2016, vol. 115, no. 6, pp. 1129–1137. DOI: 10.1160/TH15-12-0985
  39. Ozawa K., Packwood W., Varlamov O., Qi Y., Xie A., Wu M.D., Ruggeri Z., López J. [et al.]. Molecular Imaging of VWF (von Willebrand Factor) and Platelet Adhesion in Postischemic Impaired Microvascular Reflow. Circ. Cardiovasc. Imaging, 2018, vol. 11, no. 11, pp. 1–9. DOI: 10.1161/CIRCIMAGING.118.007913
  40. Saraf S., Christopoulos C., Salha I.B., Stott D.J., Gorog D.A. Impaired endogenous thrombolysis in acute coronary syndrome patients predicts cardiovascular death and nonfatal myocardial infarction. J. Am Coll. Cardiol, 2010, vol. 55, no. 19, pp. 2107–2115.DOI: 10.1016/j.jacc.2010.01.033
  41. Christopoulos C., Farag M., Sullivan K., Wellsted D., Gorog D.A. Impaired thrombolytic status predicts adverse cardiac events in patients undergoing primary percutaneous coronary intervention. Thromb. Haemost, 2017, vol. 117, no. 3, pp. 457–470. DOI: 10.1160/TH16-09-0712
  42. Farag М., Spinthakis N., Gue Y.X., Srinivasan M., Sullivan K., Wellsted D., Gorog D.A. Impaired endogenous fibrinolysis in ST-segment elevation myocardial infarction patients undergoing primary percutaneous coronary intervention is a predictor of recurrent cardiovascular events: the RISK PPCI study. European Heart Journal, 2019, vol. 40, no. 3, pp. 295–305. DOI: 10.1093/eurheartj/ehy656
  43. Ryamzina I.N, Glebova S.A. Pokazateli gemostaza i lipidnogo profilya kak prediktory serdechno-sosudistoi smerti u bol'nykh, perenesshikh infarct miokarda [Parameters of homeostasis and lipid profile as predictors of cardiovascular death among patients who have had cardiac infarction]. Permskii meditsinskii zhurnal, 2003, vol. 20, no. 2, pp. 73–77 (in Russian).
Received: 
06.04.2020
Accepted: 
03.06.2020
Published: 
30.06.2020

You are here