Irrational lighting as a health risk occurring in the Arctic

View or download the full article: 
614/5: 644.36

V.A. Kaptsov1, V.N. Deinego2


1All-Russian Research Institute of Railway Hygiene, Bldg. 1, 1 Pakgauznoe shosse, Moscow, 125438, Russian Federation
2Scientific and production commercial company “ELTAN LTD”, 2 Zavodskoy Prospekt, Fryazino, 141190, Russian Federation


We assessed health risks for operators who had to live in mobile houses in the Arctic regions. Inadequate lighting is a most significant factor related to housing conditions that can cause various pathologies resulting in decreasing working capacity. We revised data on impacts exerted by luminous and LED lighting on operators and it allowed us to determine reasons for “aftereffects” produced by LED lighting regarding an increase in latency in No. 95 pattern electroretinogram (PERG); this latency characterizes a situation with ganglionic cells in the visual analyzer. We put forward a hypothesis that lower “inhibition” efficiency was caused by absorption of blue light within 380–450 nanometers range, and an increase in PERG P50 amplitude was caused by an additional increase in Na+, Ca+ ions flows when ChR2 protein absorbed excessive 470 nm blue light against a blue light dose in a luminous lamp spectrum.
We showed that there were practically no changes in operators’ health after they had been exposed to dynamic LED lighting; however, all the participants in the experiment had a W-like splitting in P100 peak in visually induced cortical potentials as a response to stimuli with different angle sizes. When ganglionic cells are exposed to blue lighting, interaction between their degrading mitochondria and astrocytes becomes very important. LED lighting results in damage to mitochondria in ganglionic cells. Mitochondria are moved to the optic nerve head to be utilized where they are absorbed by astrocytes and eliminated with their lysosome. Should a speed of degrading mitochondria inflow exceed a speed at which they are utilized, it will cause mechanic strains in fibers of the optic nerve head due to “mitochondria jam”; this, in its turn, can lead to long-term disorders in the optic nerve head and glaucoma occurrence.
We formulated recommendations for the State Standard 23274-84 “Mobile houses. Electrical appliances. Overall technical conditions” and advised applying semi-conductor white light sources in them as they had a biologically adequate irradiation spectrum.

mobile houses, LED lighting, blue light, optic nerve, mitochondrion, astrocyte, glaucoma, biologically adequate irradiation spectrum.
Kaptsov V.A., Deinego V.N. Irrational lighting as a health risk occurring in the Arctic. Health Risk Analysis, 2020, no. 1, pp. 177–190. DOI: 10.21668/health.risk/2020.1.18.eng
  1. Skupov B. Tsilindricheskii unifitsirovannyi blok. Mobil'nyi dom dlya zhizni v ekstremal'nykh usloviyakh [A cylindrical unified block. A mobile house for living under extreme conditions]. Stroitel'nyi ekspert. Portal dlya spetsialistov arkhitekturno-stroitel'noi oblasti. Available at: (12.04.2019) (in Russian).
  2. Zhilye vagon-doma. Dlya obespecheniya komfortnykh uslovii prozhivaniya i raboty na Krainem Severe [Mobile houses used for providing comfortable conditions for living and working in the Polar Regions]. САВА servis. Zavod mobil'nykh zdanii. Available at: (12.04.2019) (in Russian).
  3. Leccese F., Vandelanotte V., Salvadori G., Rocca M. Blue Light Hazard and Risk Group Classification of 8 W LED Tubes, Replacing Fluorescent Tubes, through Optical Radiation Measurements. Sustainability, 2015, vol. 7, no. 10, pp. 13454–13468. DOI: 10.3390/su71013454
  4. Vandelanotte V., Leccese F., Corucci T., Rocca M. Optical Radiation Measurements and Risk Group Determination of 8W LED Tubes for General Lighting. CIRIAF National Congress Environmental Footprint and Sustainable Development Pe-rugia, Italy, 2015, pp. 1–11.
  5. Bazyleva L.V., Bolekhan V.N., Ganapol'skii V.P. Svetodiody v kachestve osnovnogo osveshcheniya: problem i puti resheniya [LEDs as a basic lighting source: issues and ways to resolve them]. Materialy 3-go Aziatsko-Tikhookeanskogo kon-gressa po voennoi meditsine: sbornik tezisov konferentsii, Sankt-Peterburg, 2016, pp. 7–8 (in Russian).
  6. Bolekhan V.N., Ganapol'skii V.P., Shchukina N.A., Bazyleva L.V. Kompleksnoe issledovanie vliyaniya svetodiodnykh istochnikov sveta na funktsional'noe sostoyanie organizma cheloveka [A complex examination of impacts exerted by LED lighting sources on functional state of a human body]. Meditsina i zdravookhranenie: materialy V Mezhdunarodnoi nauchnoi konferentsii. Kazan, Buk Publ., 2017, pp. 85–88 (in Russian).
  7. Zak P.P., Ostrovskii M.A. Potential danger of light emitting diode illumination to the eye, in children and teenagers. Svetotekhnika, 2012, no. 3, pp. 4–6 (in Russian).
  8. Smoleevskii A.E., Man'ko O.M., Bubeev Yu.A., Smirnova T.A. Psychophysiological effects of led lighting in condi-tions of the hermetic objects. Izvestiya Rossiiskoi voenno-meditsinskoi akademii, 2018, vol. 37, no. 2, pp. 124–127 (in Russian).
  9. SB082-055 A Spectrally Dynamic Berth Light for Active Circadian Cycle Management. SBIR. STTR. America`s seed fund, 2010. Available at: (12.04.2019).
  10. Deinego V.N., Kaptsov V.A., Balashevich L.I., Svetlova O.V., Makarov F.N., Guseva M.G., Koshits I.N. Prevention of ocular diseases in children and teenager in classrooms with led light sources of the first generation. Rossiiskaya detskaya of-tal'mologiya, 2016, no. 2, pp. 57–73 (in Russian).
  11. SB082-055 A Spectrally Dynamic Berth Light for Active Circadian Cycle Management. SBIR. STTR. America`s seed fund, 2010. Available at: (12.04.2019).
  12. Energy Focus, Inc. Receives $ 1.6 Million to Develop LED Lighting for DARPA and NASA. LIGHTimes Online – LED Industry News. Available at: (12.04.2019).
  13. Rao F., Chan A.H.S., Zhu X.-F. Effects of photopic and cirtopic illumination on steady state pupil size. Vision Re-search, 2017, vol. 137, pp. 24–28. DOI: 10.1016/j.visres.2017.02.010
  14. Kurysheva N.I., Kiseleva T.N., Khodak N.A., Irtegova E.Yu. Issledovanie bioelektricheskoi aktivnosti i krovosnab-zheniya setchatki pri glaukome RMZh [Research on bioelectrical activity and blood supply to the retina in patients with glaucoma]. RMZh. Klinicheskaya oftal'mologiya, 2012, vol. 13, no. 3, pp. 91–94 (in Russian).
  15. Amirov A.N., Zainutdinov I.I., Zvereva O.G., Korobitsin A.N. Elektroretinograficheskie pokazateli sostoyaniya setchatki i zritel'nogo nerva u patsientov POUG primenyayushchikh Travatan [Electroretinogram parameters showing a state of the retina and optic nerve in patients with primary simple glaucoma who take Travatan]. Novosti glaukomy, 2016, vol. 37, no. 1, pp. 83–84 (in Russian).
  16. Bach M., Brigell M.G., Hawlina M., Holder G.E., Johnson M.A., McCulloch D.L., Meigen T., Viswanathan S. ISCEV standard for clinical pattern electroretinography (PERG): 2012 update. Ophthalmol, 2013, no. 126, pp. 1–7. DOI: 10.1007/s10633-012-9353-y
  17. Holder G.E. Pattern electroretinography (PERG) and an integrated approach to visual pathway diagnosis. Prog. Retin. Eye Res, 2001, vol. 20, no. 4, pp. 531–561. DOI: 10.1016/s1350-9462(00)00030-6
  18. Egorov V.V., Smolyakova G.P., Borisova T.V., Gokhua O.I. Fizioterapiya v oftal'mologii: monografiya dlya vrachei-oftal'mologov i fizioterapevtov [Physiotherapy in ophthalmology: a monograph for ophthalmologists and physiotherapists]. Khabarovsk: Red.-izd. tsentr IPKSZ Publ., 2010, 335 p. (in Russian).
  19. Skobareva Z.A., Teksheva L.M. Biologicheskie aspekty gigienicheskoi otsenki estestvennogo i iskusstvennogo osveshcheniya [Biological aspects in hygienic assessment of natural and artificial lighting]. Svetotekhnika, 2003, no. 4, pp. 7–13 (in Russian).
  20. Zefirov A.L., Mukhamed'yarov M.A. Elektricheskie signaly vozbudimykh kletok [Electrical signals in excitable cells]. Kazan', Kazanskii gosudarstvennyi meditsinskii universitet Publ., 2008, pp. 119 (in Russian).
  21. Chamma I., Chevy Q., Poncer J.C., Lévi S. Role of the neuronal K-Cl co-transporter KCC2 in inhibitory and excitatory neurotransmission. Front. Cell. Neurosci, vol. 21, no. 6, pp. 5. DOI: 10.3389/fncel.2012.00005
  22. Sizemore R.J., Seeger-Armbruster S., Hughes S.M., Parr-Brownlie L.C. Viral vector-based tools advance knowledge of basal ganglia anatomy and physiology. J. Neurophysiol, 2016, vol. 115, no. 4, pp. 2124–2146. DOI: 10.1152/jn.01131.2015
  23. Shevchenko V. Svet, kamera … nervnyi impul's! [Light, camera … a nerve impulse!]. Biomolekula, 2017. Available at: (12.04.2019) (in Russian).
  24. Fioletovyi [Violet]. Spravochnik khimika 21. Available at: (12.04.2019) (in Russian).
  25. Puller C., Haverkamp S., Neitz M., Neitz J., Neuhauss S.C.F. Synaptic Elements for GABAergic Feed-Forward Sig-naling between HII Horizontal Cells and Blue Cone Bipolar Cells Are Enriched beneath Primate S-Cones. PLoS One, 2014, vol. 9, no. 2, pp. e88963. DOI: 10.1371/journal.pone.0088963
  26. Makarov S.S., Dzhebrailova Y.N., Gracheva M.E., Grachev E.A., Kochetov A.G., Gubskii L.V. Mathematical mod-eling of group of neurons and astrocytes in ischemic stroke. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova, 2012, vol. 112, no. 8 (2), pp. 59–62 (in Russian).
  27. Drone M.A. A mathematical model of ion movements in grey matter during a stroke. Journal of Theoretical Biology, 2006, no. 240, pp. 599–615. DOI: 10.1016/j.jtbi.2005.10.023
  28. Tereshina E.V. Obosnovanie metabolicheskoi sostavlyayushchei perfuzionnoi sredy dlya izolirovannogo mozga [Substantiating a metabolic component in perfusion medium for an isolated brain]. Rossiya-2045. Strategicheskoe obshchestvennoe dvizhenie, 2014. Available at: (13.04.2019) (in Russian).
  29. Davis C.O., Kim K.-Y., Bushong E.A., Mills E.A., Boassa D., Shih T., Kinebuchi M., Phan S. [et al.]. Transcellular degradation of axonal mitochondria. PNAS, 2014, vol. 111, no. 26, pp. 9633–9638. DOI: 10.1073/pnas.1404651111
  30. Rahmati N., Hoebeek F.E., Peter S., De Zeeuw C.I. Chloride homeostasis in neurons with special emphasis on the olivocerebellar system: differential roles for transporters and channels. Front. Cell. Neurosci, 2018, no. 12, pp. 101. DOI: 10.3389/fncel.2018.00101
  31. Go M.A., Daria V.R. Light-neuron interactions: key to understanding the brain. Journal of Optics, 2017, vol. 19, no. 2, pp. 023002. DOI: 10.1088/2040-8986/19/2/023002
  32. Delpire E., Staley K.J. Novel determinants of the neuronal Cl− concentration. J. Physiol, 2014, vol. 1, no. 592 (19), pp. 4099–4114. DOI: 10.1113/jphysiol.2014.275529
  33. Duebel J., Haverkamp S., Schleich W., Feng G., Augustine G.J., Kuner T., Euler T. Two-photon imaging reveals so-matodendritic chloride gradient in retinal ON-type bipolar cells expressing the biosensor Clomeleon. Neuron, 2006, vol. 5, no. 49 (1), pp. 81−94. DOI: 10.1016/j.neuron.2005.10.035
  34. Burdett T.C., Freeman M.R. Astrocytes eyeball axonal mitochondria. Retinal neurons transfer mitochondria to astro-cytes for rapid turnover to meet energy demands. Science, 2014, vol. 25, no. 345 (6195), pp. 385–386. DOI: 10.1126/science.1258295
  35. Osborne N.N., Del Olmo-Aguado S. Maintenance of retinal ganglion cell mitochondrial functions as a neuroprotective strategy in glaucoma. Current Opinion in Pharmacolog, 2013, vol. 13, no. 1, pp. 16–22. DOI: 10.1016/j.coph.2012.09.002
  36. LaFee S. Getting rid of old mitochondria: Some neurons turn to neighbors to help take out the trash. UC San Diego, 2014. Available at: (13.04.2019).
  37. Kaptsov V.A., Deinego V.N., Ulasiuk V.N. Semiconductor sources of white light with biologically adequate radiation spectrum. Glaz, 2018, vol. 119, no. 1, pp. 25–33 (in Russian).

You are here