Nanoclays in food products: benefits and possible risks (literature review)

View or download the full article: 
UDC: 
546.[62+284]: 552.524: 613.2
Authors: 

I.V. Gmoshinski1, O.V. Bagryantseva1,2, O.V. Arnautov3, S.A. Khotimchenko1,2

Organization: 

1Federal Research Center for Nutrition, Biotechnology and Food Safety, 2/14 Ust'inskiy lane, Moscow, 109240, Russian Federation
2I.M. Sechenov First Moscow State Medical University, Bld. 2, 2 Bolshaya Pirogovskaya Str., Moscow, 119991, Russian Federation
3Eurasian Economic Commission, Bld.1/2, 2 Letnikovskaya St., Moscow, 115114, Russian Federation

Abstract: 

Nanoclays (NC) are aluminosilicates that consist of layers (nano-plates) being 1–2 nanometers thick and having a diameter over 1 µm, nanotubes, and nano-disks. Due to such structure and their ion-exchange and sorption properties as well as gas permeability NC are widely used in industries, agriculture, and medicine. Gas-barrier composite packages are made from hydrophobic NC modified with cation-active surface-active substances. A person can be orally exposed to NC due to their migration from packages into food products and drinks, when NC are applied in medicine as enteric sorbents and anti-bacterial preparations, they can be introduced with food additives and residual quantities of technological auxiliaries as well as in case when food products and agricultural raw materials are accidentally contaminated with clays. Multiple research works dwell on experiments with NC performed with model systems in vitro when NC turned out to be cytotoxic for various cell types, and it was more apparent for hydrophobic NC than for their non-modified analogues. Minimum effective NC dose varied from 0.001 to 1 mg/ml in various in vitro tests. In vitro research on NC toxicity yielded somewhat contradictory results. Though NC didn’t seem to have apparent acute toxicity (IV hazard category, LD50 > 5,000 mg/kg), results obtained via sub-acute and chronic experiments with their duration being up to 196 days and single clinical observations revealed a number of both toxic and non-toxic effects. Organic NC modifiers were highly toxic in vitro. Besides, NC produce anti-microbe effects and it may result in dysbiotic disorders when they are introduced orally. Model experiments revealed that NC and their organic modifiers could possibly migrate from packages into food products. NC are able to free silicon and aluminum that are partly biologically available. A contribution made by NC that are contained in packages into overall exposure to toxic aluminum should be examined profoundly given an adverse situation caused by clay minerals being introduced into a human body as components contained in food additives. Assessment of aluminum consumption with food rations in Russia and several foreign countries revealed it was necessary to exclude potassium and calcium aluminosilicates, bentonite, and kaolin (Е555, Е556, Е558, and Е559) from the list of additives that are permitted for use in food industry.

Keywords: 
nanoclays, aluminum, food additive, exposure, biological availability, toxicity, intestinal microbiocenose, risks
Gmoshinski I.V., Bagryantseva O.V., Arnautov O.V., Khotimchenko S.A. Nanoclays in food products: benefits and possible risks (literature review). Health Risk Analysis, 2020, no. 1, pp. 142–164. DOI: 10.21668/health.risk/2020.1.16.eng
References: 
  1. Bagryantseva О.V., ShatrovG.N., KhotimchenkoS.А., BessonovV.V., Arnautov О.V. Aluminium: Food-related health risk assessment of the consumers. HealthRiskAnalysis, 2016, no. 1, pp.59–68. DOI: 10.21668/health.risk/2016.1.07.eng
  2. OnishchenkoG.G., TutelyanV.A. On concept of toxicological studies, methodology of risk assessment, metods of identification and quantity determining of nanomaterials. Voprosy pitaniya, 2007, vol. 76, no. 6, pp. 4–8. (in Russian).
  3. Maynard A.D. Nanotechnology: assessing the risks. Nano today,2006, vol. 1, no. 2, pp. 22–33. DOI: 10.1016/S1748-0132(06)70045-7
  4. Bentonite, kaolin, and selected clay minerals: Environmental Health Criteria 231. Geneva, World Health Organization, 2005, pp. 1–158. Available at: https://www.who.int/ipcs/publications/ehc/ehc_231.pdf (22.08.2019).
  5. Maisanaba S., Pichardo S., Puerto M., Gutiérrez-Praena D., Cameán A.M., Jos A. Tox-icological evaluation of clay min-erals and derived nanocomposites: a review. Environ. Res., 2015, vol. 138, pp. 233–254. DOI:10.1016/j.envres.2014.12.024
  6. Jordá-Beneyto M., Alonso J., Salas J., Gallur M., Aucejo S., Clegg F., Breen C. Processed biopolymer films filled with modified montmorillonite for food packaging applications. Proceedings of the Polymer Processing Society 24th Annual Meeting, PPS-24, June 15–19, 2008, Salerno (Italy), pp. 15–19.
  7. Jordá- Beneyto M., Ortuño N., Devis A., Aucejo S., Puerto M., Gutiérrez-Praena D., Houtman J., Pichardo S., Maisanaba S., Jos A., Use of nanoclay platelets in food packaging materials: technical and cytotoxity approach. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk. Assess, 2014, vol. 31, no. 3, pp. 354–364. DOI: 10.1080/19440049.2013.874045
  8. Lai M., Kim J.K., Effects of epoxy treatment of organoclay on structure, thermo-mechanical and transport properties of poly(ethylene terephthalate-co-ethylene naphthalate)/organoclay nanocomposites. Polymer, 2005, vol. 46, pp. 4722–4734. DOI:10.1016/j.polymer.2005.03.062
  9. Pal R., Murthy H.N.N., Rai K.S., Krishna M., Influence of organomodified nanoclay on the mechanical behavior of vi-nylester/glass nanocomposites. Int. J. Chem. Tech. Res., 2014, vol. 6, pp. 916–928.
  10. Betega de Paiva L., Morales A.R., Valenzuela Díaz F.R., Organoclays: properties, preparation and applications. Appl. Clay. Sci., 2008, Vol. 42, pp. 8–24. DOI: 10.1016/j.clay.2008.02.006
  11. Yu J., Baek M., Chung H.E., Choi S.J. Physicochemical properties affecting the potentia-lin vitro cytotoxicity of inorganic layered nanoparticles. Toxicol. Environ. Health. Sci., 2010, vol. 2, pp. 149–152.
  12. Murray H.H., Traditional and new applications for kaolin, smectite, and palygorskite: a general overview. Appl. Clay. Sci., 2000, vol. 17, pp. 207–221. DOI: 10.1016/S0169-1317(00)00016-8
  13. Bitinis N., Hernández M., Verdejo R., Kenn, J.M., López-Machado M.A. Recent advances in clay/polymer nanocompo-sites. Adv. Mater., 2011, vol. 23, pp. 5229–5236.
  14. Tayeb A.H., Tajvidi M. Sustainable barrier system via self-assembly of colloidal montmorillonite and cross-linking res-ins on nanocellulose interfaces. ACS Appl. Mater. Interfaces, 2019, vol.11, no. 1, pp. 1604–1615. DOI: 10.1021/acsami.8b16659
  15. De Azeredo H.M.C. Nanocomposites for food packaging applications. Food. Res. Int., 2009, vol. 42, no. 11, pp. 1240–1253. DOI:10.1016/j.foodres.2009.03.019
  16. Duncan T.V. Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J. Colloid. Interf. Sci., 2011, vol. 363, no. 1, pp. 1–24. DOI: 10.1016/j.jcis.2011.07.017
  17. Hatzigrigoriou N.B., Pasparydes C.D. Nanotechnology in plastic food-contact materials. J. Appl. Polym. Sci., 2011, vol. 122, no. 6, pp. 3720–3729. DOI: 10.1002/app.34786
  18. Hetzer M., De Kee D., Wood/polymer/nanoclay composites, environmentally friendly sustanaible technologies: a re-view. Chem. Eng. Res. Des., 2008, vol. 86, no. 10, pp. 1083–1093. DOI: 10.1016/j.cherd.2008.05.003
  19. Avella M., De Vlieger J.J., Errico M.E., Fischer S., Vacca P., Volpe M.G. Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem., 2005, vol. 93, no. 3, pp. 467–474. DOI:10.1016/j.foodchem.2004.10.024
  20. Salarbashi D., Noghabi M.S., Bazzaz B.S.F., Shahabi-Ghahfarrokhi I., Jafari B., Ahmadi R. Eco-friendly soluble soybean polysaccharide/nanoclay Na+bionanocomposite: Properties and characterization. Carbohydrate Polymers, 2017, vol.169, pp. 524–532. DOI: 10.1016/j.carbpol.2017.04.011
  21. Iamareerat B., Singh M., Sadiq M.B., Anal A.K. Reinforced cassava starch based edible film incorporated with essential oil and sodium bentonite nanoclay as food packaging material. J. Food Sci. Technol., 2018, vol. 55, no. 5, pp. 1953–1959. DOI: 10.1007/s13197-018-3100-7
  22. Butnaru E., Stoleru E., Brebu M.A., Darie-Nita R.N., Bargan A., Vasile C. Chitosan-based bionanocomposite films pre-pared by emulsion technique for food preservation. Materials (Basel), 2019, vol. 12, no. 3, pp. E373. DOI: 10.3390/ma12030373
  23. Beigzadeh Ghelejlu S., Esmaiili M., Almasi H. Characterization of chitosan-nanoclay bionanocomposite active films containing milk thistle extract. Int. J. Biol. Macromol., 2016, vol. 86, pp. 613–621. DOI: 10.1016/j.ijbiomac.2016.02.012
  24. Brody A.L. Nano and food packaging technologies converge. Food Technol., 2006, vol. 60, no. 3, pp. 92–94.
  25. Ray S., Quek S.Y., Easteal A., Chen X.D. The potential use of polymer–clay nanocom-posites in food packaging. Int. J. Food Eng., 2006, vol. 2, no. 4, pp. 22–25. DOI: 10.2202/1556-3758.1149
  26. Boelter J.F., Brandelli A. Innovative bionanocomposite films of edible proteins containing liposome-encapsulated nisin and halloysite nanoclay. Colloids Surf. B. Biointerfaces, 2016, vol. 145, pp. 740–747. DOI: 10.1016/j.colsurfb.2016.05.080
  27. Meira S.M., Jardim A.I., Brandelli A. Adsorption of nisin and pediocin on nanoclays. Food Chem., 2015, vol. 188, pp. 161–169. DOI: 10.1016/j.foodchem.2015.04.136
  28. Lagaron J.M. Higher barriers and better performance. Food Eng. Ingredients, 2006, vol. 31, no. 2, pp. 50–51.
  29. Echegoyen Y. Nanodevelopments in food packaging and labelling applications. In: Rai M., Ribeiro C., Mattoso L., Du-ran N., eds. Nanotechnologies in Food and Agriculture. Switzerland, Springer, 2015, pp. 141–166.
  30. Gokkurt T., Durmus A., Sariboga V., Oksuzomer M.A.F. Investigation of thermal, rheological, and physical properties of amorphous poly(ethylene terephthalate) / organoclay nanocomposite films. J. Appl. Polym. Sci., 2013, vol. 129, no. 5, pp. 2490–2501. DOI: 10.1002/app.38982
  31. Rodrigues L.A., Figueiras A., Veiga F., de Freitas R.M.., Nunes L.C., da Silva Filho E.C., da Silva Leite C.M. The sys-tems containing clays and clay minerals from modified drug release: a review. Colloids Surf. B Biointerfaces, 2013, vol. 103, pp. 642–651. DOI: 10.1016/j.colsurfb.2012.10.068
  32. Akbari Alavijeh M., Sarvi M.N., Ramazani Afarani Z. Properties of adsorption of vitamin B12 on nanoclay as a versatile carrier. Food Chem., 2017, vol. 219, pp. 207–214. DOI: 10.1016/j.foodchem.2016.09.140
  33. Ramesh A., Hasegawa H., Maki T., Ueda K. Adsorption of inorganic and organic arsenic from aqueous solutions by polymeric Al/Fe modified montmorillonite. Separation and Purifica-tion Technol., 2007, vol. 56, pp. 90–100. DOI:10.1016/j.seppur.2007.01.025
  34. Abdel-Wahhab M.A., El-Nekeety A.A., Hathout A.S., Sabery B.A., Ibrahim M.I., Gado R.A., Zawrah M.F., Aly S.E. Preparation and characterization of organo-modified nano montmorillonite and evaluation of its ability to adsorb aflatoxins, fumonisins and zearalenone from aqueous solution. Nano Sci. Tech. Open Lib., 2015, vol. 1, no. 1, pp.27–34.
  35. Harvey R.B., Kubena L.F., Elissalde M.H., Corrier D.E., Phillips T.D. Comparison of two hydrated sodium calcium aluminosilicates compounds to experimentally protect growing barrows from aflatoxicosis. J. Vet. Diagn. Invest., 1994, vol. 6, no. 1, pp. 88–92. DOI:10.1177/104063879400600115
  36. Humer E., Kröger I., Neubauer V., Reisinger N., Zebeli Q. Supplementation of a clay mineral-based product modulates plasma metabolomic profile and liver enzymes in cattle fed grain-rich diets. Animal, 2019, vol. 13, no. 6, pp. 1214–1223. DOI: 10.1017/S1751731118002665
  37. Abrahams P.W., Davies T.C., Solomon A.O., Trow A.J., Wragg J. Human geophagia, calabash chalk and undongo: mineral element nutritional implications. PLoS One, 2013, vol. 8, no. 1, pp. e53304. DOI:10.1371/journal.pone.005330
  38. Tayie F.A., Koduah G., Mork S.A.pp. Geophagia clay soil as a source of mineral nutrients and toxicants. African J. Food Agric. Nutr. Develop., 2013, vol.13, no. 1, pp.8. DOI: 10.18697/ajfand.56.12580
  39. Afriyie-Gyawu E., Wang Z., Ankrah N.A., Xu L., Johnson N.M., Tang L., Guan H., Huebner H.J., Jolly P.E., Ellis W.O., Taylor R., Brattin B., Ofori-Adjei D., Williams J.H., Wang J.S., Phillips T.D. NovaSil clay does not affect the concentrations of vitamins A and E and nutrient minerals in serum samples from Ghanaians at high risk for aflatoxicosis. Food Addit. Contam. Part A., 2008, vol. 25, pp. 872–884. DOI: 10.1080/02652030701854758
  40. Moosavi M. Bentonite clay as a natural remedy: a brief review. Iran J. Public Health, 2017, vol. 46, no. 9, pp. 1176–1183.
  41. EFSA. European Food Safety Authority. Scientific opinion guidance on the risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain. EFSA J., 2011, vol 9, no. 5, pp. 1–36. DOI:10.2903/j.efsa.2011.2156
  42. Eisenbrand G., Pool-Zobel B., Baker V., Balls B.J., Blaauboer B.J., Boobis A., Carere A., Kevekordes S., Lhuguenot J.C., Pieters R., Kleiner J. Methods of in vitro toxicology. Food Chem. Toxicol., 2002, vol. 40, no. 2–3, pp. 193–236.
  43. Murphy E.J., Roberts E., Horrocks L.A. Aluminum silicate toxicity in cell cultures. Neuroscience,1993, vol. 55, no. 2, pp. 597–605.
  44. Li P.R., Wei J.C., Chiu Y.F., Su H.L. Peng F.C., Lin J.J. Evaluation on cytotoxicity and genotoxicity of the exfoliated silicate nanoclay. ACS Appl. Mater. Interfaces, 2010, vol. 2, pp. 1608–1613. DOI: 10.1021/am1001162
  45. Baek M., Lee J.-A., Choi S.-J. Toxicological effects of a cationic clay, montmorillonite in vitro and in vivo. Mol. Cell. Toxicol., 2012, vol. 8, no. 1, pp. 95–101. DOI: 10.1007/s13273-012-0012-x
  46. Sharma A.K., Schmidt B., Frandsen H., Jacobsen N.R., Larsen E.H., Binderup M.L. Ge-notoxicity of unmodified and organo-modified montmorillonite. Mutation Res., 2010, vol. 700, no. 1–2, pp. 18–25. DOI: 10.1016/j.mrgentox.2010.04.021
  47. Gao N., Keane M.J., Ong T., Wallace W.E. Effects of simulated pulmonary surfactant on the cytotoxicity and DNA-damaging activity of respirable quartz and kaolin. J. Toxicol. Environ. Health A., 2000, vol. 60, no. 3, pp.153–167.
  48. Verma N.K., Moore E., Blau W., Volkov Y., Babu P.R., Cytotoxicity evaluation of na-noclays in human epithelial cell line A549 using high content screening and real-time impedance analysis. J. Nanopart. Res., 2012, vol. 14, no. 9, pp. 1137–1148. DOI: 10.1007/s11051-012-1137-5.
  49. Vergaro V., Abdullayev E., Lvov Y.M., Zeitoun A., Cingolani R., Rinaldi R., Leporatti S. Cytocompatibility and uptake of halloysite clay nanotubes. Biomacromolecules, 2010, vol. 11, no. 3, pp. 820–826. DOI: 10.1021/bm9014446
  50. Lai X., Agarwal M., Lvov Y.M., Pachpande C., Varahramyan K., Witzmann F.A. Proteomic profiling of halloysite clay nanotube exposure in intestinal cell co-culture. J. Appl. Toxicol., 2013, vol. 33, no. 11, pp. 1316–1329. DOI: 10.1002/jat.2858
  51. Rawat K., Agarwal S., Tyagi A., Verma A.K., Bohidar H.B. Aspect ratio dependent cytotoxicity and antimicrobial prop-erties of nanoclay. Appl. Biochem. Biotechnol., 2014, vol.174, no. 3, pp.936–944. DOI: 10.1007/s12010-014-0983-2
  52. Lordan S., Kennedy J.E., Higginbotham C.L. Cytotoxic effects induced by unmodified and organically modified nanoclays in the human hepatic HepG2 cell line. J. Appl. Toxicol., 2011, vol. 31, no. 1, pp. 27–35. DOI: 10.1002/jat.1564
  53. Janer G., Fernández-Rosas E., Mas del Molino E., González-Gálvez D., Vilar G., López-Iglesias C., Ermini V., Vázquez-Campos S. In vitro toxicity of functionalised nanoclays is mainly driven by the presence of organic modifiers. Nanotoxicology, 2014, vol. 8, no. 3, pp. 279–294. DOI: 10.3109/17435390.2013.776123
  54. Jodynis-Liebert J., Nowicki M., Murias M., Adamska T., Ewertowska M., Kujawska M., Piotrowska H., Konwerska A., Ostalska-Nowicka D., Pernak J. Cytotoxicity, acute and sub-chronic toxicity of ionic liquid, didecyldimethylammonium sac-charinate in rats. Regul. Toxicol. Pharmacol., 2010, vol. 57, no. 2–3, pp. 266–273. DOI: 10.1016/j.yrtph.2010.03.006
  55. Maisanaba S., Puerto M., Pichardo S., Jordá M., Moreno F.J., Aucejo S., Jos Á. In vitro toxicological assessment of clays for their use in food packaging applications. Food Chem. Toxicol., 2013, vol. 57, no. 6, pp. 266–275. DOI: 10.1016/j.fct.2013.03.043
  56. Houtman J., Maisanaba S., Puerto M., Gutiérrez-Praena D., Jordá M., Aucejo S., Jos A. Toxicity assessment of organomodified clays used in food contact materials on human target cell lines. Appl. Clay Sci., 2014, vol. 90, pp. 150–158. DOI: 10.1016/j.clay.2014.01.009
  57. Maisanaba S., Pichardo S., Jordá-Beneyto M., Aucejo S., Cameán A.M., Jos A. Cytotoxicity and mutagenicity studies on migration extracts from nanocomposites with potential use in food packaging. Food Chem. Toxicol., 2014, vol. 66, pp. 366 –372. DOI: 10.1016/j.fct.2014.02.011
  58. Maisanaba S., Prieto A., Pichardo S., Jordá-Beneyto M., Aucejo S., Jos A. Cytotoxicity and mutagenicity assessment of organomodified clays potentially used in food packaging. Toxicol. in vitro, 2015, vol. 29, no. 6, pp. 1222–1230. DOI: 10.1016/j.tiv.2015.03.010
  59. Zhang M., Li X., Lu Y., Fang X., Chen Q., Xing M., He J. Studying the genotoxic effects induced by two kinds of ben-tonite particles on human B lymphoblast cells in vitro. Mutation Res., 2011, vol. 720, pp. 62–66. DOI:10.1016/j.mrgentox.2010.12.009
  60. Zhang M., Lu Y., Li X., Chen Q., Lu L., Xing M., Zou H., He J.Studying the cytotoxicity and oxidative stress induced by two kinds of bentonite particles on human B lymphoblast cells in vitro. Chem. Biol. Interact., 2010, vol. 183, no. 3, pp. 390–396. DOI: 10.1016/j.cbi.2009.11.023
  61. Han H.K., Lee Y.C., Lee M.Y., Patil A.J., Shin H.J. Magnesium and calcium organophyllosilicates: synthesis and in vi-tro cytotoxicity study. ACS Appl. Mater. Interfaces, 2011, vol. 3, no. 7, pp. 2564 –2572. DOI: 10.1021/am200406k
  62. Liu Q., Liu Y., Xiang S., Mo X., Su S., Zhang J. Apoptosis and cytotoxicity of oligo(styrene-co-acrylonitrile)-modified montmorillonite. Appl. Clay Sci., 2011, vol. 51, pp. 214–219. DOI: 10.1016/j.clay.2010.11.019
  63. Liu M., Zhang Y., Wu C., Xiong S., Zhou C. Chitosan/halloysite nanotubes bionanocom-posites: structure, mechanical properties and biocompatibility. Int. J. Biol. Macromol., 2012, vol. 51, no. 4, pp. 566–575. DOI: 10.1016/j.ijbiomac.2012.06.022
  64. Zia K.M., Zuber M., Barikani M., Hussain R., Jamil T., Anjum S. Cytotoxicity and mechanical behavior of chitin-bentonite clay based polyurethane bio-nanocomposites. Int J. Biol. Macromol., 2011, vol. 49, no. 5, pp. 1131–1136. DOI: 10.1016/j.ijbiomac.2011.09.010
  65. Kevadiya B.D., Chettiar S.S., Rajkumar S., Bajaj H.C., Gosai K.A., Brahmbhatt H. Evaluation of clay/poly (L-lactide) microcomposites as anticancer drug 6-mercaptopurine reservoir through in vitro cytotoxicity, oxidative stress markers and in vivo pharmacokinetics. Colloids Surf. B Biointerfaces, 2013, vol. 112, pp. 400–407. DOI: 10.1016/j.colsurfb.2013.07.008
  66. Salarbashi D., Tafaghodi M., Bazzaz B.S.F., Mohammad Aboutorabzade Birjand S., Ba-zeli J. Characterization of a green nanocomposite prepared from soluble soy bean polysaccharide/Cloisite 30B and evaluation of its toxicity. Int. J. Biol. Mac-romol., 2018, vol.120, pt A, pp. 109–118. DOI: 10.1016/j.ijbiomac.2018.07.183.
  67. Wagner A., Eldawud R., White A., Agarwal S., Stueckle T.A., Sierros K.A., Rojanasakul Y., Gupta R.K., Dinu C.Z. Toxicity evaluations of nanoclays and thermally degraded byproducts through spectroscopical and microscopical approaches. Bio-chim. Biophys. Acta, 2017, vol. 1861, no. 1, pt A, pp. 3406–3415. DOI: 10.1016/j.bbagen.2016.09.003
  68. Wagner A., White A.P., Stueckle T.A., Banerjee D., Sierros K.A. , Rojanasakul Y., Agarwal S., Gupta R.K., Dinu C.Z. Early assessment and correlations of nanoclay’s toxicity to their physical and chemical properties. ACS Appl. Mater. Interfaces, 2017, vol. 9, no. 37, pp. 32323–32335. DOI:10.1021/acsami.7b06657
  69. Murphy E.J., Roberts E., Anderson D.K., Horrocks L.A. Cytotoxicity of aluminium silicates in primary neuronal cul-tures. Neuroscience, 1993, vol. 57, pp. 483–490.
  70. Elmore A.R. Final report on the safety assessment of aluminum silicate, calcium silicate, magnesium aluminum silicate, magnesium silicate, magnesium trisilicate, sodium magnesium silicate, zirconium silicate, attapulgite, bentonite, Fuller's earth, hec-torite, kaolin, lithium magnesium silicate, lithium magnesium sodium silicate, montmorillonite, pyrophyllite, and zeolite. Int. J. Toxicol., 2003, vol. 22, suppl. 1, pp. 37–102.
  71. Slamova R., Trckova M., Vondruskova H., Zraly Z., Pavlik I. Clay minerals in animal nutrition. Appl. Clay Sci., 2011, vol. 51, no. 4, pp. 395–398. DOI: 10.1016/j.clay.2011.01.005
  72. Wilson M.J. Clay mineralogical and related characteristics of geophagic materials. J. Chem. Ecol., 2003, vol. 29, no. 7, pp. 1525–1547.
  73. Lee Y.H., Kuo T.F., Chen B.Y., Feng Y.K., Wen Y.R., Lin W.C., Lin F.H. Toxicity assessment of montmorillonite as a drug carrier for pharmaceutical applications: yeast and rats model. Biomed. Eng. Appl. Basis Commun., 2005, vol. 17, pp. 72–78. DOI: 10.4015/S1016237205000111
  74. Mascolo N., Summa V., Tateo F. In vivo experimental data on the mobility of hazardous chemical elements from clays. Appl. Clay Sci., 2004, vol. 25, no. 1–2, pp. 23–28. DOI: 10.1016/j.clay.2003.07.001
  75. Afriyie-Gyawu E., Mackie J., Dash B., Wiles M., Taylor J., Huebner H., Tang L., Guan H., Wang J.S., Phillips T. Chronic toxicological evaluation of dietary NovaSil clay in Sprague–Dawley rats. Food Addit. Contam., 2005, vol. 22, no. 3. pp. 259–269. DOI: 10.1080/02652030500110758
  76. EFSA. European Food Safety Authority. Scientific opinion on the safety and efficacy of a preparation of bentonite and sepiolite (Toxfin Dry) as feed additive for all species. EFSA J., 2013, vol.11, no. 4, pp. 1–21. DOI: 10.2903/j.efsa.2013.3179
  77. Maisanaba S., Gutiérrez-Praena D., Puerto M., Moyano R., Blanco A., Jordá M., Cameán A.M., Aucejo S., Jos A.
    Effects of the subchronic exposure to organomodified clay for food packaging applications on Wistar rats. Appl. Clay. Sci., 2014, vol. 95, pp. 37–40. DOI: 10.1016/j.clay.2014.04.006
  78. Maisanaba S., Puerto M., Gutiérrez-Praena D., Llana-Ruíz-Cabello M., Pichardo S., Mate A., Jordá-Beneyto M., Cameán A.M., Aucejo S., Jos A. In vivo evaluation of activities and expression of antioxidant enzymes in Wistar rats exposed for 90 days to a modified clay. J. Tox-icol. Environ. Health A., 2014, vol. 77, no. 8, pp. 456–466. DOI: 10.1080/15287394.2013.876696
  79. Wiles M.W., Huebner H.J., Afriyie-Gyawu E., Taylor R.J., Bratton G.R., Phillips T.D. Toxicological evaluation and metal bioavailability in pregnant rats following exposure to clay minerals in the diet. J. Toxicol. Environ. Health A., 2004, vol. 67, no. 11, pp. 863–874. DOI: 10.1080/15287390490425777
  80. Sharma A.K., Mortensen A., Schmidt B., Frandsen H., Hadrup N., Larsen E.H., Binderup M.L. In vivo study of genotoxic and inflammatory effects of the organo-modified Montmorillonite Cloisite 30B. Mutation Res., 2014, vol. 770, pp. 66–71. DOI: 10.1016/j.mrgentox.2014.04.023
  81. Hsu S., Wang M., Lin J. Biocompatibility and antimicrobial evaluation of montmorillo-nite/chitosan nanacomposites. Appl. Clay Sci., 2012, vol. 56, pp. 53–62. DOI: 10.1016/j.clay.2011.09.016
  82. Smirnova V.V., Tananova O.N., Shumakova A.A., Trushina E.N., Avren’yeva L.I., Bykova I.B., Minayeva L.P., Soto S.KH., Lashneva N.V., Gmoshinski I.V., Khotimchenko S.A. Toxicological and sanitary characterization of bentonite nanoclay. Gigiyena i sanitariya, 2012, no. 3, pp.76–78. (in Russian).
  83. Reichardt F., Oudart H., Ackermann A., Sabatier L., Lignot J., Habold C., Boos A., Ha-gege A., Liewig H.N. Clay complementation in rat diet: chronic effect of kaolinite on the intestinal lining. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 2007, vol. 146, no. 4, pp. S186–S187. DOI: 10.1016/j.cbpa.2007.01.408
  84. Melin V.E., Potineni H., Hunt P., Griswold J., Siems B., Were S.R., Hrubec T.C. Exposure to common quaternary ammonium disinfectants decreases fertility in mice. Reprod. Toxicol., 2014, vol. 50, pp. 163–170. DOI: 10.1016/j.reprotox.2014.07.071
  85. Maisanaba S., Gutiérrez-Praena D., Puerto M., Llana-Ruiz-Cabello M., Pichardo S., Moyano R., Blanco A., Jordá-Be-neyto M., Jos A. In vivo toxicity evaluation of the migration extract of an organomodified clay–poly(lactic) acid nanocomposite. J. Toxicol. Environ. Health A., 2014, vol. 77, no. 13, pp. 731–746. DOI: 10.1080/15287394.2014.890987
  86. Phillips T.D. Dietary clay in the chemoprevention of aflatoxin-induced disease. Toxicol. Sci., 1999, vol. 52, suppl. 2, pp. 118–126. DOI: 10.1093/toxsci/52.suppl_1.118
  87. El-Nekeety A.A., El-Kady A.A., Abdel-Wahhab K.G., Hassan N.S., Abdel-Wahhab M.A. Reduction of individual or combined toxicity of fumonisin B1 and zearalenone via dietary inclusion of organo-modified nano-montmorillonite in rats. Environ. Sci. Pollut. Res. Int., 2017, vol. 24, no. 25, pp. 20770–20783. DOI: 10.1007/s11356-017-9721-y
  88. Williams L.B., Metge D.W., Eberl D.D., Harvey R.W., Turner A.G., Prapaipong P., Poret-Peterson A.T. What makes a natural clay antibacterial? Environ. Sci. Technol., 2011, vol. 45, no. 8, pp.3768–3773. DOI: 10.1021/es1040688
  89. Williams L.B., Haydel S.E. Evaluation of the medicinal use of clay minerals as antibac-terial agents. Int. Geol. Rev., 2010, vol. 52, no. 7–8, pp. 745–770. DOI: 10.1080/00206811003679737
  90. Wang M.C., Lin J.J., Tseng H.J., Hsu S.H. Characterization, antimicrobial activities and biocompatibility of organically modified clays and their nanocomposites with polyurethane. Appl. Mater. Interfaces, 2012, vol. 4, no. 1, pp. 338–350. DOI: 10.1021/am2014103
  91. Davachi S.M., Shekarabi A.S. Preparation and characterization of antibacterial, eco-friendly edible nanocomposite films containing Salvia macrosiphon and nanoclay. Int. J. Biol. Macromol., 2018, vol. 113, pp. 66–72. DOI: 10.1016/j.ijbiomac.2018.02.106
  92. Merino D., Mansilla A.Y., Casalongué C.A., Alvarez V.A. Preparation, characterization, and in vitro testing of nanoclay antimicrobial activities and elicitor capacity. J. Agric. Food Chem., 2018, vol. 66, no. 12, pp. 3101–3109. DOI: 10.1021/acs.jafc.8b00049
  93. Lee K.J. Pharmacologic agents for chronic diarrhea. Intest. Res.,2015, vol. 13, pp. 306–312. DOI: 10.5217/ir.2015.13.4.306
  94. Chang F.-Y. Irritable bowel syndrome: The evolution of multi-dimensional looking and multidisciplinary treatments. World J. Gastroenterol., 2014, vol. 20, no. 10, pp. 2499–2514. DOI:10.3748/wjg.v20.i10.2499
  95. Pérez-Gaxiola G., Cuello-García C.A., Florez I.D., Pérez-Pico V.M. Smectite for acute infectious diarrhoea in children. Cochrane Database of Systematic Reviews, 2018, Issue 4, Art. pp. CD011526. DOI: 10.1002/14651858.CD011526.pub2
  96. Echegoyen Y., Rodríguez S., Nerín C. Nanoclay migration from food packaging materials. Food Addit. Contam. Part A, 2016, vol. 33, no. 3, pp. 530–539. DOI: 10.1080/19440049.2015.1136844
  97. Xia Y., Rubino M., Auras R. Interaction of nanoclay-reinforced packaging nanocomposites with food simulants and compost environments. Adv. Food Nutr. Res., 2019, vol. 88, pp. 275–298. DOI: 10.1016/bs.afnr.2019.02.001
  98. Schmidt B., Petersen J.H., Bender Koch C., Plackett D., Johansen N.R., Katiyar V., Larsen E.H. Combining asym-metrical flow field-flow fractionation with light scattering and induc-tively coupled plasma mass spectrometric detection for characterization of nanoclay used in biopolymer nanocomposites. Food Addit. Contam., 2009, vol. 26, no. 12, pp. 1619–1627. DOI: 10.1080/02652030903225740
  99. Bott J., Franz R. Investigation into the potential migration of nanoparticles from laponite-polymer nanocomposites. Na-nomaterials (Basel), 2018, vol. 8, no. 9, pp. E723. DOI:10.3390/ nano8090723.
  100. Xia Y., Rubino M., Auras R. Release of nanoclay and surfactant from polymer-clay nanocomposites into a food simu-lant. Environ. Sci. Technol., 2014, vol. 48, no. 23, pp. 13617–13624. DOI:10.1021/es502622c.
  101. Simon P., Chaudhry Q., Bakos D. Migration of engineered nanoparticles from polymer packaging to food – a physicochemical view. J. Food Nutr. Res., 2008, vol. 47, no. 3, pp. 105–113.
  102. Farhoodi M., Mousavi S. M., Sotudeh-Gharebagh R., Emam-Djomeh Z., Oromiehie A. Migration of aluminum and silicon from PET/clay nanocomposite bottles into acidic food simulant. Packaging Technology and Science, 2013, vol. 27, no. 2, pp. 161–168. DOI:10.1002/pts.2017.
  103. Diaz C.A., Xia Y., Rubino M., Auras R., Jayaraman K., Hotchkiss J. Fluorescent labeling and tracking of nanoclay. Nanoscale, 2013, vol. 5, no. 1, pp.164–168. DOI: 10.1039/c2nr32978f
  104. Mauricio-Iglesias M., Peyron S., Guillard V., Gontard N. Wheat gluten nanocomposite films as food-contact materials: Migration tests and impact of a novel food stabilization technology (high pressure). J. Appl. Polymer Sci., 2010, vol. 116, no. 5, pp. 2526–2535. DOI: 10.1002/app.31647
  105. Han C., Zhao A., Varughese E., Sahle-Demessie E. Evaluating weathering of food pack-aging polyethylene-nanoclay composites: release of nanoparticles and their impacts. NanoIm-pact, 2018, vol. 9, pp. 61–71. DOI: 10.1016/j.impact.2017.10.005
  106. López-Galindo A., Viseras C., Cerezo P. Compositional, technical and safety specifications of clays to be used as pharmaceutical and cosmetic products. Appl. Clay Sci., 2007, vol. 36, no. 1–3, pp. 51–63. DOI: 10.1016/j.clay.2006.06.016
  107. Silvestre C., Duraccio D., Cimmino S. Food packaging based on polymer nanomaterials. Prog. Polym. Sci., 2011, vol. 36, no. 12, pp. 1766–1782. DOI:10.1016/j.progpolymsci. 2011.02.003
  108. Zhao J., Castranova V. Toxicology of nanomaterials used in nanomedicine. J. Toxicol. Env. Health B., 2011, vol. 14, no. 8, pp. 593–632. DOI: 10.1080/10937404.2011.615113
  109. Zhu H., Njuguna J. Nanolayered silicate/clay minerals uses and effects on health. Health and Environmental Safety of Nanomate-rials. In: JNjuguna,K.Pielichowski, H. Zhu, eds.The Netherlands Woodhead Publishing, Elsevier, 2014, pp. 133–146.
  110. Wagner A., White A.P., Tang M.C., Agarwal S., Stueckle T.A., Rojanasakul Y., Gupta R.K., Dinu C.Z. Incineration of nanoclay composites leads to byproducts with reduced cellular reactivity. Sci. Rep., 2018, vol. 8, no. 1, pp.10709. DOI: 10.1038/s41598-018-28884-y
  111. Carretero M.I. Clay minerals and their beneficial effects upon human health. A review. Appl. Clay Sci., 2002, vol. 21, no. 3–4, pp. 155–163. DOI:10.1016/S0169-1317(01)00085-0
  112. Droy-Lefaix M.T., Tateo F. Clays and clay minerals as drugs. Handbook of Clay Science, vol. 1. In: F. Bergaya, B.KG.Theng, G. Lagaly, eds. The Netherlands,Elsevier, 2006, pp. 743–752.
  113. Carretero M.I., Gomes C.S.F., Tateo T. Clays and human health. Handbook of Clay Science, vol. 1. In: F. Bergaya, B.K.GTheng, L. Lagaly, eds. The Netherlands, Elsevier, 2006, pp. 717–741.
  114. Phillips T.D., Afriyie-Gyawu E., Williams J., Huebner H., Ankrah N.A., Ofori-Adjei D., Jolly P., Johnson N., Taylor J., Marroquin-Cardona A., Xu L., Tang L. Wang J.S. Reducing human exposure to aflatoxin through the use of clay: a review. Food Addit. Contam. A, 2008, vol. 25, no. 2, pp. 134–145. DOI: 10.1080/02652030701567467
  115. Aguilar F., Autrup H., Barlow S. et al. Safety of aluminium from dietary intake. Scientific Opinion of the Panel on Food Additives, Flavourings, Processing Aids and Food Contact Ma-terials (AFC). EFSA J., 2008, vol. 754, pp. 1–34. DOI: 10.2903/j.efsa.2008.754
  116. EFSA. European Food Safety Authority. Dietary exposure to aluminium-containing food additives. Supporting Publi-cations 2013:EN-411. 17 p. Available at:http://www.efsa.europa.eu/en/supporting/pub/en-411 (14.02.2020).
  117. Evaluation of certain food additives and contaminants: sixty-seventh report of the Joint FAO / WHO Expert Committee on Food Additives. WHO Technical Report, 2007. Series 940,pp.33–48. Available at: https://apps.who.int/iris/bit-stream/handle/
    10665/43592/WHO_TRS_940_eng.pdf;jsessionid=22993D369D427464DB04531CA7049498?sequence=1 (14.02.2020).
  118. Aluminium in food. Risk Assessment. Studies Report No. 35. Chemical Hazard Evalua-tion. Centre for Food Safety Food and Environmental Hygiene Department. The Government of the Hong Kong Special Administrative Region, 2009. 45 p. Available at https://www.cfs.gov.hk/english/programme/programme_rafs/files/RA35_Alumi... (14.02.2020).
  119. Burrell S.-A.M, Exley C. There is (still) too much aluminium in infant formulas. BMC Pediatrics, 2010, no. 10, pp. 63–67. DOI: 10.1186/1471-2431-10-63
  120. Navarro-Blasco I., Alvarez-Galindo J.I. Aluminum content of Spanish infant formula. Food Addit. Contam., 2003, vol. 20, no. 5, pp. 470–481. DOI: 10.1080/0265203031000098704
  121. EMA. European Medicines Agency. Studies to evaluate the safety of residues of veterinary drugs in human food: gen-eral approach to establish a microbiological ADI. London, 2012. Available at:https://www.ema.europa.eu/en/documents/scientific-guideline/vich-gl36r-s... (14.02.2020).
  122. Rondeau V., Jacqmin-Gadda H., Commenges D., Helmer C., Dartigues J.F. Aluminum and silica in drinking water and the risk of Alzheimer's disease or cognitive decline: findings from 15-year follow-up of the PAQUID cohort. Am. J. Epi-demiol., 2009, vol. 169, no. 4, pp. 489–496. DOI: 10.1093/aje/kwn348
  123. Poole R.L., Pieroni K.P., Gaskari S., Dixon T., Kerner J.A. Aluminum exposure in neonatal patients using the least contaminated parenteral nutrition solution products. Nutrients, 2012, vol. 4, no. 11, pp. 1566–1574. DOI: 10.3390/nu4111566
  124. Report of the forty-sixth session of the codex committee on food additives. Hong Kong, China 17–21 March 2014, REP14/FA, 116 pp. Available at: http://www.jhnfa.org/k149.pdf (14.02.2020).
  125. Regulation (EU) No 1333/2008 of the European Parliament and of the Council of 16 December 2008 on food additives. Official Journal of the European Union, L 354/16.Available at:https://eur-lex.europa.eu/legal-content/EN/TXT/
    ?uri=celex%3A32008R1333 (14.02.2020).
  126. Commission regulation (EU) No 380/2012 of 3 May 2012 amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council as regards the conditions of use and the use levels for aluminium-containing food additives. Official Journal of the European Union, 2012, vol. 119, pp.14–38.
Received: 
17.02.2020
Accepted: 
18.03.2020
Published: 
30.03.2020

You are here